Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (11): 1601-1608.doi: 10.3724/SP.J.1006.2016.01601

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

TaPK-R1 Overexpressing Transgenic Wheat Lines Enhance ResistancetoSharp Eyespotand Freezing Stress

LUOMei-Ying1,2,RONGWei2,WEIXue-Ning2,YANGKun2,XUHui-Jun2,XUANWei-Yan1,*,ZHANGZeng-Yan2,*   

  1. 1 Agricultural College of Guangxi University, Nanning 530004, China; 2 The National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Science, Chinese Aca?demy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-03-09 Revised:2016-07-11 Online:2016-11-12 Published:2016-08-11
  • Contact: Xuan Weiyan:E-mail:xuanweiyan_1@163.com;Zhang Zengyan,E-mail:zhangzengyan@caas.cn E-mail:luo_meiying@yeah.net
  • Supported by:

    ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina(31271799).

Abstract:

Sharp eyespot caused by Rhizoctonia cerealis is a soil-borne disease and freezing stress is one of the major abiotic stresses in wheat production. The object of this study was to improve wheat resistance to sharp eyespot and freezing using transgenic technique. The transformation vector pAHC25-MYC-TaPK-R1 expressing the wheat AGC protein kinase gene TaPK-R1 was constructed and transformed into the spring wheat Chinese cultivar Yangmai 20 through particle bombardment. The transformed T1 to T4 plants were subjected to PCR, RT-PCR, qRT-PCR, and Western blot analyses. Three transgenic wheat lines were generated and screened, in which the introduced TaPK-R1 transgene was inherited and expressed in higher level. After inoculation with R. cerealis virulent-isolate R0301 or WK207, these three TaPK-R1-overexpressing transgenic wheat lines displayed significant improved resistance to sharp eyespot. The infection types of these 3 transgenic lines in T1 to T4 generations were 1.16–2.11, and their disease indices were 23.20–42.10. At the same time, the infection types and disease indexes of the non-transformed wheat Yangmai 20 were 2.55–3.60 and 51.00–72.00, respectively. The three-leaf wheat seedlings were treated with ?9 ?C for 24 hours. Freezing tolerances of the three transgenic lines were dramatically improved, whose survival rates were 52%, 79%, and 96%, respectively, and significantly higher (P < 0.01) than that of the non-transformed Yangmai 20 (survival rate of 17%). Our results indicate that resistance/tolerance to sharp eyespot and freezing stress could be significantly enhanced in TaPK-R1 overexpressing transgenic wheat. The three transgenic lines may serve as potential resource in wheat breeding aiming at resistance improvement to sharp eyespot and freezing stress.

Key words: Wheat, Sharpeyespot, Proteinkinase, TaPK-R1, Freezing, Enhancedresistance

[1]ChenL,ZhangZY,LiangHX,LiuHX,DuLP,XuHJ,XinZY.OverexpressionofTiERF1enhancesresistancetosharpeyespotintransgenicwheat.JExpBot,2008,59:4195–4204 [2]ChenJ,LiGH,DuZY,QuanW,ZhangHY,CheMZ,WangZ,ZhangZJ.MappingofQTLconferringresistancetosharpeyespot(Rhizoctoniacerealis)inbreadwheatattheadultplantgrowthstage.TheorApplGenet,2013,126:2865–2878 [3]梁宜策,薛理靠,张军峰,王兴志.小麦冻害调查初报.陕西农业科学,2003,(5):38–41 LiangYC,XueLK,ZhangJF,WangXZ.Theinvestigationreportoffreezinginjurytowheat.ShaanxiJAgricSci,2003,(5):38–41(inChinesewithEnglishabstract) [4?a?niewskaJ,MacioszekVK,LawrenceCB,KononowiczAK.Fighttodeath:Arabidopsisthalianadefenseresponsetofungalnecrotrophicpathogens.ActaPhysiolPlant,2010,32:1–10 [5]RuddJJ,KeonJ,Hammond-KosackKE.Thewheatmitogen-activatedproteinkinasesTaMPK3andTaMPK6aredifferentiallyregulatedatmultiplelevelsduringcompatiblediseaseinteractionswithMycosphaerellagraminicola.PlantPhysiol,2008,147:802–815 [6]PearceLR,KomanderD,AlessiDR.ThenutsandboltsofAGCproteinkinases.NatRevMolCellBioly,2010,11:9–22 [7]DingZ,Galvan-AmpudiaCS,DemarsyE,LangowskiL,Kleine-VehnJ,FanY,MoritaMT,TasakaM,FankhauserC,OffringaR,FrimlJ.Light-mediatedpolarizationofthePIN3auxintransporterforthephototropicresponseinArabidopsis.NatCellBIol,2011,13:447–452 [8]RobertHS,OffringaR.RegulationofauxintransportpolaritybyAGCkinases.CurrOpinPlantBiol,2008,11:495–502 [9]GarciaAV,Al-YousifM,HirtH.RoleofAGCkinasesinplantgrowthandstressresponses.CellulMolLifeSci,2012,69:3259–3267 [10]RentelMC,LecourieuxD,OuakedF,UsherSL,PetersenL,OkamotoH,KnightH,PeckSC,GriersonCS,HirtH,KnightMR.OXI1kinaseisnecessaryforoxidativeburst-mediatedsignallinginArabidopsis.Nature,2004,427:858–861 [11]PetersenLN,IngleRA,KnightMR,DenbyKJ.OXI1proteinkinaseisrequiredforplantimmunityagainstPseudomonassyringaeinArabidopsis.JExpBot,2009,60:3727–3735 [12]ZhuXL,KunY,WeiXN,ZhangQF,WeiR,DuLP,YeXG,QiL,ZhangZY.ThewheatAGCkinaseTaAGC1isapositivecontributortohostresistancetothenecrotrophicpathogenRhizoctoniacerealis.JExpBot,2015,66:6591–6603 [13]ZhuXL,QiL,LiuX,CaiSB,XuHJ,HuangRF,LiJR,WeiXN,ZhangZY.ThewheatERFtranscriptionfactorTaPIE1mediateshostresponsestoboththenecrotrophicpathogenRhizoctoniacerealisandfreezingstresses.PlantPhysiol,2014,164:1499–1514 [14]AlexandraSD,KonstantinVK,ValeriyaSK,OlgaAA.VaCPK20,acalcium-dependentproteinkinasegeneofwildgrapevineVitisamurensisRupr,mediatescoldanddroughtstresstolerance.JPlantPhysiol,2015,185:1–12 [15]ChristensenAH,QuailPH.Ubiquitinpromoter-basedvectorsforhigh-levelexpressionofselectableand/orscreenablemarkergenesinmonocotyledonousplants.TransgenicRes,1996,5:213–218 [16]徐惠君,庞俊兰,叶兴国,杜丽璞,李连城,辛志勇,马有志,陈剑平,陈炯,程顺和,吴宏亚.基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究.作物学报,2001,27:688–693 XuHJ,PangJL,YeXG,DuLP,LiLC,XinZY,MaYZ,ChenJP,ChenJ,ChengSH,WuHY.StudyonthegenetransferringofNib8intowheatforitsresistancetotheYellowmosaicvirusbybombardment.ActaAgronSin,2001,27:688–694(inChinesewithEnglishabstract) [17]Saghai-MaroofMA,SolimanKM,JorgensenRA,AllardRW.RibosomalDNAspacer-lengthpolymorphismsinbarley:Mendelianinheritance,chromosomallocation,andpopulationdynamics.ProcNatlAcadSciUSA,1984,81:8014-8019 [18]LivakKJ,SchmittgenTD.Analysisofrelativegeneexpressiondatausingreal-timequantitativePCRandthe2–ΔΔCTmethod.Methods,2001,25:402–408 [19]申芳嫡,洪彦涛,杜丽璞,徐惠君,马翎健,张增艳.转细胞凋亡抑制基因OpIAP和p35增强小麦对纹枯病的抗性.作物学报,2015,41:1490–1499 ShenFD,HongYT,DuLP,XuHJ,MaLJ,ZhangZY.ExpressionofApoptosisInhibitorgenesOpIAPandp35enhancesresistancetoRhizoctoniacerealisintransgenicwheat.ActaAgronSin,2015,41:1490–1499(inChinesewithEnglishabstract) [20]魏学宁,任丽娟,张淼,张巧凤,刘欣,周淼平,马鸿翔,吴继中,马翎健,张增艳.人工合成抗纹枯病小麦新种植的鉴定.植物遗传资源学报,2015,16:373–378 WeiXN,RenLJ,ZhangM,ZhangQF,LiuX,ZhouMP,MaHX,WuJZ,MaLJ,ZhangZY.Identificationofsyntheticwheataccessionwithresistancetowheatsharpeyespot.JPlantGenetResour,2015,16:373–378(inChinesewithEnglishabstract) [21]王裕中,吴志凤,史建荣,陈怀谷,邵伯坤.小麦纹枯病流行规律研究.江苏农业科学,1993,(麦类纹枯病专辑):48–53 WangYZ,WuZF,ShiJR,ChenHG,ShaoBK.Epidemiclawresearchofwheatsharpeyespot.JiangsuAgricSci,1993,(specialissueofwheatsharpeyesport):48–53(inChinesewithEnglishabstract) [22]蔡士宾,任丽娟,颜伟,吴纪中,陈怀谷,吴小有,张仙义.小麦抗纹枯病种质创新及QTL定位的初步研究.中国农业科学,2006,39:928–934 CaiSB,RenLJ,YanW,WuJZ,ChenHG,WuXY,ZhangXY.Germplasmdevelopmentandmappingofresistancetosharpeyespot(Rhizoctoniacerealis)inwheat.SciAgricSin,2006,39:928–934(inChinesewithEnglishabstract) [23]刘颖,张巧凤,付必胜,蔡士宾,蒋彦婕,张志良,邓渊钰,吴纪中,戴廷波.小麦纹枯病抗源的遗传多样性及抗性基因位点SSR标记分析.作物学报,2015,41:1671–1681 LiuY,ZhangQF,FuBS,CaiSB,JiangYJ,ZhangZL,DengYY,WuJZ,DaiTB.GeneticdiversityofwheatgermplasmresistanttosharpeyespotandgenotypingofresistancelociusingSSRmarkers.ActaAgronSin,2015,41:1671–1681(inChinesewithEnglishabstract) [24]LiuBY,LuY,XinZY,ZhangZY.Identificationandantifungalassayofawheatb-1,3-glucanase.BiotechnolLett,2009,31:1005–1010 [25]周淼平,周小青,张增艳,董娜,马鸿翔,姚金保.TaPIMP1过量表达提高转基因小麦纹枯病抗性的研究.核农学报,2011,25:421–426 ZhouMP,LiZhouXQ,ZhangZY,DongN,MaHX,YaoJB.Over-expressionofTaPIMP1enhancedresistancetowheatsharpeyespotintransgenicwheat.JNuclAgricSci,2011,25:421–426(inChinesewithEnglishabstract) [26]WeiXN,ShenFD,HongYT,RongW,DuLP,LiuX,XuHJ,MaLJ,ZhangZY.Thewheatcalcium-dependentproteinkinaseTaCPK7-Dpositivelyregulateshostresistancetosharpeyespotdisease.MolPlantPathogen,2016,online.doi:10.1111/mpp12360 [27]LiuST,LiuSW,WangM,WeiTT,MengC,WangM,XiaGM.AwheatsimilartoRCD-ONEgeneenhancesseedlinggrowthandabioticstressresistancebymodulatingredoxhomeostasisandmaintaininggenomicintegrity.PlantCell,2014,26:164–180 [28]XiangY,HuangY,XiongL.Characterizationofstress-responsiveCIPKgenesinriceforstresstoleranceimprovement.PlantPhysiol,2007,44:1416–1428 [29]CaiG,WangG,WangL,PanJ,LiuY,LiD.ZmMKK1,anovelgroupAmitogen-activatedproteinkinasegeneinmaize,conferredchillingstresstoleranceandwasinvolvedinpathogendefenseintransgenictobacco.PlantSci,2014,214:57–73

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!