Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (06): 862-874.doi: 10.3724/SP.J.1006.2017.00862

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Internal Transcribed Spacers (ITS) Sequences and Phylogenetics of Main Bast Fiber Crops

ZHANG Li-Lan1,2,WANG Jun1,WAN Xue-Bei1,2,XU Yi1,2,ZHANG Lie-Mei1,FANG Ping-Ping1,QI Jian-Min1,*,ZHANG Li-Wu1,2,*   

  1. 1 College of Crop Science / Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops of Ministry of Education / Fujian Key Laboratory for Crop Breeding by Design; 2 Center for Genomics and Biotechnology of Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2016-09-30 Revised:2017-03-02 Online:2017-06-12 Published:2017-03-13
  • Contact: 祁建民, E-mail: qijm863@163.com; 张立武, E-mail: lwzhang@fafu.edu.cn, zhang_liwu@hotmail.com E-mail:1204549467@qq.com
  • Supported by:

    This study was supported by the Doctoral Program of Higher Education of China (20133515120002), the Introduction Breeding and Varieties Demonstration of Featured Crops between China and Benin (2015I0001), the Distinguished Young Research Fund in Fujian Agriculture and Forestry University (xjq201401), the China Agriculture Research System (nycytx-19-E06), the Experiment Station of Jute and Kenaf in Southeast China (Nongkejiaofa 2011), and the Undergraduate Innovation Training Program in Fujian Agriculture and Forestry University.

Abstract:

Sequences comparison of ribosomal internal transcribed spacer (ITS) could provide evidence for the systematic classification and evolutionary relationships of main bast fiber crops and other species. In this study, the ITS sequences of 32 main bast fiber crops and 11 other species with reference genome sequences were obtained from cloning or GenBank database. The whole gene length, G+C content, and the difference of homologous percentage were analysed using MEGE software. The ITS average lengths of sequences from jute (Corchorus), kenaf (Hibiscus), ramie (Boehmeria nivea) and flax (Linum usitatissimum) were 963, 939, 658, and 686 bp, respectively. And the corresponding G+C contents were 57.87%, 58.03%, 59.05%, and 53.75%, respectively. The variation of jute (Corchorus) concentrated on a region of 220 to 386 bp, kenaf (Hibiscus) on two regions of 206 to 347 bp and 599 to 713 bp, ramie (Boehmeria nivea) on four regions of 158 to 163 bp, 193 to 199 bp, 288 to 333 bp, and 681to 688 bp, and flax (Linum usitatissimum) on five regions of 219 to 229 bp, 235 to 240 bp, 427 to 432 bp, 468 to 484 bp, and 588 to 594 bp. Phylogenetic analysis showed that jute and kenaf shared a relatively close genetic relationship while the others had a far genetic relationship, which is consistent with the relationship of traditional species classification in systematic botany. In study of comparative genomics, the genome sequecne of cotton might be regarded as a reference for kenaf or jute, and the genome sequence of Populus trichocarpa or Ricinus communis might be regarded as a reference for ramie. We deduced that the evolutionary time of kenaf, jute, ramie and flax could be roughly estimated as 33.7, 65.3, 67.5, and 90.5 million years ago, respectively, showing the longer evolution time the more variation regions of ITS in different species of bast fiber crops in the same genus.

Key words: Bast fiber crop, ITS, Systematic classification, Evolution relationship

[1]熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008 Xiong H P. Fiber Crops Breeding. Beijing: China Agricultural Scientific and Technical Publishers, 2008 (in Chinese with English abstract) [2]粟建光. 我国麻类资源的多样性及其保护利用对策. 植物遗传资源科学, 2002, 3(3): 41–46 Su J G. Strategies for protection and sustainable utilization of genetic diversity of bast fiber crops in China. J Plant Genet Resour, 2002, 3(3): 41–46 (in Chinese with English abstract) [3]陶爱芬, 祁建民, 李木兰, 方平平, 林荔辉, 徐建堂. SRAP结合ISSR方法分析黄麻属的起源与演化. 中国农业科学, 2012, 45: 16–25 Tao A F, Qi J M, Li M L, Fang P P, Lin L H, Xu J T. SRAP combined with ISSR method to analyze the origin and evolution of Corchorus. Sci Agric Sin, 2012, 45: 16–25 (in Chinese with English abstract) [4]Zhang L W, Li A Q, Wang X F, Xu J T, Zhang G Q, Su J G, Qi J M, Guan C Y. Genetic diversity of kenaf (Hibiscus cannabinus) evaluated by inter-simple sequence repeat (ISSR). Biochem Genet, 51: 800–810 [5]张波, 郑长清, 赵立宁, 臧巩固. 中国苎麻近缘野生种的种类、分布与评价. 作物品种资源, 1998, (4): 1–2 Zhang B, Zheng C Q, Zhao L N, Zang G G. Species, distribution and evaluation of wild species of ramie in China. China Seed Industry, 1998, (4): 1–2 (in Chinese with English abstract) [6]史全良, 赵卫国. 桑树ITS序列测定及特点的初步分析. 蚕业科学, 2001, 27: 140–141 Shi Q L, Zhao W G. Preliminary study on ITS sequence in gand characteristics of mulberry. Sci Seric, 2001, 27: 140–142 (in Chinese with English abstract) [7]陈仁芳, 余茂德, 刘秀群, 陈龙清. 桑种质资源ITS序列与系统进化分析. 中国农业科学, 2010, 43: 1771–1781 Chen R D, Yu M D, Liu X Q, Chen L Q. Analysis on the internal transcribed spacers (ITS) sequences and phylogenetics of mulberry (Morus). Sci Agric Sin, 2010, 43: 1771–1781 (in Chinese with English abstract) [8]Wu C C, Wang S J, Zhang H B. Interactions among genomic structure, function, and evolution revealed by comprehensive analysis of the Arabidopsis thaliana genome. Genomics, 2006, 88: 394–406 [9]Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel Russell J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy Richard G et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution.. Nat Biotechnol, 2015, 33: 524–530 [10]Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103 [11]Wullschleger S D, Weston D J, Difazio S P, Tuskan G A. Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiol, 2012, 33: 357–364 [12]Couch J A, Zintel H A, Fritz P J. The genome of the tropical tree Theobroma cacao L. Mol General Genet, 1993, 237: 123–128 [13]Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M Z, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom, 2015, 16: 1–16 [14]Krishnakumar V, Kim M, Rosen B D, Karamycheva S, Bidwell S L, Tang H, Town C D. MTGD: The Medicago truncatula genome database. Plant Cell Physiol, 2015, 56: e1 [15]Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto Si, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena J A, Wada N, Kohinata T. Sequence analysis of the genome of an oil-bearing tree (Jatropha curcas L.). DNA Res, 2010, 18: 65–76 [16]Chan A P, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones K M, Redman J, Chen G, Cahoon E B, Gedil M, Stanke M, Haas B J, Wortman J R, Fraser-Liggett C M, Ravel J, Rabinowicz P D. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol, 2010, 28: 951–966 [17]Cunff L L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon A F, Boursiquot J M, This P. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol, 2008, 8: 31 [18]Yu J, Hu S N, Wang J, Wong Gane Ka-Shu, Li S G, Liu B, Deng Y J, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79–92 [19]张立武, 袁民航, 何雄威, 刘星, 方平平, 林荔辉, 陶爱芬, 徐建堂, 祁建民. GenBank数据库中黄麻EST-SSR标记的开发及其通用性评价. 作物学报, 2014, 40: 1213–1219 Zhang L W, Yuan M H, He X W, Liu X, Fang P P, Lin L H, Tao A F, Xu J T, Qi J M. Development and universality evaluation of EST-SSR markers from GenBank in jute. Acta Agron Sin, 2014, 40: 1213–1219 (in Chinese with English abstract) [20]Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, 2002, Chapter 2: 2.3.1–2.3.22 [21]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599 [22]Chen P, Ran S M, Li R, Huang Z P, Qian J H, Yu M L, Zhou R Y. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Mol Breed, 2014, 34: 1879–1891 [23]Zhang L W, Wan X B, Xu J T, Lin L H, Qi J M. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015, 35: 192–202 [24]Liu T, Tang S W, Zhu S Y, Tang Q M, Zheng X. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol, 2014, 86: 85–92 [25]Chen J, Yu R, Liu L, Wang B, Peng D. Large-scale developing of simple sequence repeat markers and probing its correlation with ramie (Boehmeria nivea L.) fiber quality. Mol Genet Genom, 2016, 291: 1–9 [26]祁建民, 李维明, 吴为人. 黄麻的起源与进化研究. 作物学报, 1997, 23: 677–682 Qi J M, Li W M, Wu W R. Study on the origin and evolution of jute. Acta Agron Sin, 1997, 23: 677–682 (in Chinese with English abstract) [27]Zhang L W, Ming R, Zhang J, Tao A F, Fang P P, Qi J M. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.). BMC Genom, 2015, 16: 1062–1074 [28]吴建忠, 赵东升, 黄文功, 刘岩, 于莹, 姜卫东, 赵茜, 康庆华, 程莉莉, 袁红梅, 吴广文, 关凤芝. 12个亚麻品种亲缘关系的SRAP分析. 中国麻业科学, 2012, (4): 153–156 Wu J Z, Zhao D S, Huang W G, Liu Y, Yu Y, Jiang W D, Zhao Q, Kang Q H, Cheng L L, Yuan H M, Wu G W, Guan F Z. Genetic relationship analysis of 12 flax cultivars with SRAP marker. Plant Fiber Sci China, 2012, (4): 153–156 (in Chinese with English abstract) [29]Zhang L, Wan X, Xu J, Lin L, Qi J. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015, 35: 192–202 [30]Biswas C, Dey P, Karmakar P G, Satpathy S. Discovery of large-scale SNP markers and construction of linkage map in a RIL population of jute (Corchorus capsularis). Mol Breed, 2015, 35: 1–10 [31]Kundu A, Chakraborty A, Mandal N A, Das D, Karmakar P G, Singh N K, Sarkar D. A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae s. l.). Mol Breed, 2015, 35: 1–17 [32]Kundu A, Topdar N, Sarkar D, Sinha M K, Ghosh A, Banerjee S, Das M, Balyan H S, Mahapatra B S, Gupta P K. Origins of white (Corchorus capsularis L.) and dark (C. olitorius L.) jute: a reevaluation based on nuclear and chloroplast microsatellites. J Plant Biochem Biotechnol, 2013, 22: 372–381 [33]Chen J, Pei Z, Dai L, Wang B, Liu L, An X, Peng D. Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genom, 2014, 15: 919 [34]Liu T, Zhu S, Tang Q, Ping C, Yu Y, Tang S. De novo assembly and characterization of transcriptome using illumina paired-end sequencing and identification of cesa gene in ramie (Boehmeria nivea L. gaud). BMC Genom, 2013, 14: 1–11 [35]Tuskan G A, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L,Aerts A, Bhalerao R R, Bhalerao R P, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho P M, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596–604 [36]陈晓蓉, 潘其辉, 龚秋林, 王富强, 雷雪芳, 谭陈菊, 龚礼萍, 张萍, 刘齐元. 基于苎麻属野生近缘种形态变异类型的系统关系研究. 中国麻业科学, 2014, (5): 217–223 Chen X R, Pan Q H, Gong Q L, Wang F Q, Lei X F, Tan C J, Gong L P, Zhang P, Liu Q Y. Systematic relationship on morphological variation types of wild relative species of Boehmeria. Plant Fiber Sci China, 2014, (5): 217–223 (in Chinese with English abstract) [37]张波, 赵立宁, 臧巩固, 郑长清, 熊和平. 中国苎麻属植物野生种考察报告. 中国麻作, 1995, (4): 1–6 Zhang B, Zhao L N, Zang G G, Zheng C Q, Xiong H P. Investigation report on wild species of ramie in China. China’s Fiber Crops, 1995, (4): 1–6 (in Chinese with English abstract) [38]潘其辉, 高海军, 龚秋林, 陈勇玲, 陈晓蓉, 欧阳爱平, 刘上信, 刘灵燕. 中国苎麻属野生种资源多样性保护现状与对策. 中国麻业科学, 2012, (6): 153–156 Pan Q H, Gao H J, Gong Q L, Chen Y L, Chen X R, Ou-Yang A P, Liu S X, Liu L Y. Conservation status and Countermeasures of wild species resources of ramie in China. Plant Fiber Sci China, 2012, (6): 153–156 (in Chinese with English abstract) [39]Yu R, Baloch S U, Liu L, Pan Q, Gong S, Zhong X, Wang B, Peng D. The phylogenetic relationships among germplasm resources of wild ramie (Boehmeria nivea L. Gaud) in China based on trnL-F and its sequences. Pakistan J Bot, 2015, 47: 1451–1457 [40]Van B H, Stout J M, Cote A G, Tallon C M, Sharpe A G, Hughes T R, Page J E. The draft genome and transcriptome of Cannabis sativa. Genome Biol, 2011, 12: R102 [41]Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith D W, Grassa C J, Geraldes A, Cronk Q C, Cullis C, Dash P K, Kumar P A, Cloutier S, Sharpe A, Wong G, Wang J, Deyholos M K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J Cell Mol Biol, 2012, 72: 461–473

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[3] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[4] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[5] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[6] XU Yi, ZHANG Li-Lan, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Genomics and genetic improvement in main bast fiber crops: advances and perspectives [J]. Acta Agronomica Sinica, 2021, 47(6): 997-1019.
[7] CHENG Yan-Shuang, HU Mei-Yan, DU Zhi-Min, YAN Bing-Chun, LI Li, WANG Yi-Wei, JU Xiao-Tang, SUN Li-Li, XU Hai. Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation [J]. Acta Agronomica Sinica, 2021, 47(5): 964-973.
[8] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[9] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[10] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[11] ZHANG Rui-Dong,XIAO Meng-Ying,XU Xiao-Xue,JIANG Bing,XING Yi-Fan,CHEN Xiao-Fei,LI Bang,AI Xue-Ying,ZHOU Yu-Fei,HUANG Rui-Dong. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance [J]. Acta Agronomica Sinica, 2020, 46(6): 889-901.
[12] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[13] YAN Cai-Xia,WANG Juan,ZHANG Hao,LI Chun-Juan,SONG Xiu-Xia,SUN Quan-Xi,YUAN Cui-Ling,ZHAO Xiao-Bo,SHAN Shi-Hua. Developing the key germplasm of Chinese peanut landraces based on phenotypic traits [J]. Acta Agronomica Sinica, 2020, 46(4): 520-531.
[14] Song-Feng XIE,Wan-Quan JI,Yao-Yuan ZHANG,Jun-Jie ZHANG,Wei-Guo HU,Jun LI,Chang-You WANG,Hong ZHANG,Chun-Huan CHEN. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat [J]. Acta Agronomica Sinica, 2020, 46(3): 365-384.
[15] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!