Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (09): 1347-1356.doi: 10.3724/SP.J.1006.2017.01347

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of Planting Density on Water Consumption Characteristics of Maize in Oasis Irrigation Area

WANG Qiao-Mei1,**,FAN Zhi-Long1,**,ZHAO Yan-Hua2,YIN Wen1,CHAI Qiang1,*   

  1. 1 Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China;
    2 College of Resources & Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2016-12-24 Revised:2017-04-20 Online:2017-09-12 Published:2017-05-11
  • Contact: Chaiqiang, E-mail: Chaiq@gsau.edu.cn
  • Supported by:

    This study was supported by the Special Fund for Agro-scientific Research in the Public Interest (201503125-3) and the National Natural Science Foundation of China (31360323).

Abstract:

In oasis irrigation agricultural region, water resources deficit is one of the most serious constraints for crop production. However, the insufficient academic support for how compact planting affecting crop water consumption has led to a great short slab on increasing yield and water use efficiency (WUE) simultaneously through the regulation of plant density in practices. Under the same fertilization and irrigation level, a field experiment was carried out in 2012-2015 in order to investigate the water consumption characteristics, yield and water use efficiency of maize under different density levels (D1, 75 000 plants ha-1, low; D2, 87 000 plants ha-1, medium; and D3, 99 000 plants ha-1, high). Withincreasing planting density the total water consumption (ET) increased in whole growth stage, but had no significant changes from sowing to jointing stage and from filling to full ripe stage. The total ET in high and medium density treatments significantly increased by 22.8% and 14.4% on average of four years, while by 28.4% and 18.2% on average of four years mainly in big trumpet to silking stage, respectively, compared with low density treatment. Similarly, increasing planting density could reduce invalid water consumption and increase water use efficiency, the high and medium density treatments reduced evaporation (E) in whole growth stage, by 56.5 mm and 27.6 mm, significantly decreased average daily evaporation from jointing to filling, and even greatly from big trumpet to silking stage, with the decreased values of 0.51 mm and 0.27 mm, respectively, compared with low density treatment. For E/ET, it was decreased with planting density increases, and the E/ET under high and medium density was reduced by 34.5% and 18.8%, respectively, especially from jointing to big trumpet, which decreased by 22.1% and 10.7%, respectively. On average, the grain yield under high and medium density was 17.9% and 14.8% greater than that under low density, but the difference was not significant. The water use efficiency (WUE) under high, medium and low density was 18.2, 19.3, and 16.8 kg ha-1 mm-1, respectively. While, the irrigation water use efficiency (IWUE) under high and medium density was increased by 34.5% and 19.6%, respectively, compared with low density. Therefore, further increasing planting density is favorable to improve grain yield and IWUE under the condition of traditional water supplement and film mulching in Oasis irrigation region.

Key words: Dense planting, Water consumption, E/ET, Grain yield, Water use efficiency

[1] 段义忠, 亢福仁. 不同覆盖材料对旱地马铃薯土壤水热状况及其水分利用效率的影响. 水土保持通报, 2014, 34(5): 55–59
Duan Y Z, Kang F R. Influences of different mulching treatments on soil temperature, water content, and water use efficiency of dry land planted with potato. Bull Soil Water Conserv, 2014, 34(5): 55–59 (in Chinese with English abstract)
[2] 贾志红, 易建华, 孙在军. 不同覆盖物对烤烟根温及生长和生理特性的影响. 应用生态学报, 2006, 17: 2075–2078
 Jia Z H, Yi J H, Sun Z J. Effects of different mulches on rhizosphere temperature, growth, and physiological properties of flue-cured tobacco. Chin J Appl Ecol, 2006, 17: 2075–2078 (in Chinese with English abstract)
[3] 殷文, 陈桂平, 柴强, 赵财, 冯福学, 于爱忠, 胡发龙, 郭瑶. 前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响.中国农业科学, 2016, 49: 2898–2908
Yin Wen, Chen G P, Chai Q, Zhao C, Feng F X, Yu A Z, Hu F L, Guo Y. Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi corridor. Sci Agric Sin, 2016, 49: 2898–2908 (in Chinese with English abstract)
[4] 王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明. 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014, 40: 2136–2148
Wang X B, Hou H P, Zhou B Y, Sun X F, Ma W, Zhao M. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agron Sin, 2014, 40: 2136–2148 (in Chinese with English abstract)
[5] 张冬梅, 张伟, 陈琼, 黄学芳, 姜春霞, 韩彦龙. 种植密度对旱地玉米植株性状及耗水特性的影响. 玉米科学, 2014, 22(4): 102–108
Zhang D M, Zhang W, Chen Q, Huang X F, Jiang C X, Han Y L. Effects of planting density on plant traits and water consumption characteristics of dryland maize. Maize Sci, 2014, 22(4): 102–108 (in Chinese with English abstract)
[6] 王小林, 张岁岐, 王淑庆. 不同密度下品种间作对玉米水分平衡的影响. 中国生态农业学报, 2013, 21(2): 171–178
Wang X L, Zhang S Q, Wang S Q. Effects of cultivars intercropping on maize water balance under different planting densities. Chin J Eco-agric, 2013, 21(2): 171–178 (in Chinese with English abstract)
[7] Walker S, Ogindo H O. The water budget of rain-fed maize and bean intercrop. Phys & Chem Earth Parts a/b/c, 2003, 28: 919–926
[8] Pellegrino A, Lebon E, Voltz M. Relationships between plant and soil water status in vine (Vitis vinifera L.). Plant Soil, 2005, 266: 129–142
[9] 苏培玺, 杜明武, 赵爱芬, 张小军. 荒漠绿洲主要作物及不同种植方式需水规律研究. 干旱地区农业研究, 2002, 20(2): 79–85
Su P X, Du M W, Zhao A F, Zhang X J. Study on water requirement law of some crops and different planting mode in oasis. Agric Res Arid Areas, 2002, 20(2): 79–85 (in Chinese with English abstract)
[10] 孙仕军, 樊玉苗, 许志浩, 张旭东, 迟道才. 东北雨养区地膜覆盖条件下种植密度对玉米田间土壤水分和产量的影响. 生态学杂志, 2014, 33: 2650–2655
Sun S J, Fan Y M, Xu Z H, Zhang X D, Chi D C. Effects of planting density on soil moisture and corn yield under plastic film mulching in a rain-fed region of northeast China. Chin J Ecol, 2014, 33: 2650–2655 (in Chinese with English abstract)
[11] 翟治芬, 赵元忠, 景明, 张建华, 卢艳敏. 秸秆和地膜覆盖下春玉米农田腾发特征研究. 中国生态农业学报, 2010, 18(1): 62–66
    Zhai Z F, Zhao Y Z, Jing M, Zhang J H, Lu Y M. Evapotranspiration characteristics of spring maize under film and straw mulch. Chin J Eco-agric, 2010, 18(1): 62–66 (in Chinese with English abstract)
[12] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226–1233
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J Z. Effects of planting density and row spacing on canopy apparent photosynthesis of high yield summer corn. Acta Agron Sin, 2010, 36: 1226–1233 (in Chinese with English abstract)
[13] 路文涛, 贾志宽, 张鹏. 宁南旱区有机培肥对冬小麦光合特性和水分利用效率的影响. 植物营养与肥料学报, 2011, 17: 1066–1074
Lu W T, Jia Z K, Zhang P. Effects of organic fertilization on winter wheat photosynthetic characteristics and water use efficiency in semi-arid areas of Southern Ningxia. Plant Nutr Fert Sci, 2011, 17: 1066–1074 (in Chinese with English abstract)
[14] 刘泉汝, 郎坤, 赵丹丹, 沈加印, 李全起, 韩惠芳. 秸秆覆盖和种植密度对夏玉米水分利用的影响. 排灌机械工程学报, 2013, 31: 1089–1094
Liu Q R, Lang K, Zhao D D, Shen J Y, Li Q Q, Han H F. Effects of straw mulching and plant density on water utilization of summer maize. J Drain Irrig Mach Eng, 2013, 31: 1089–1094 (in Chinese with English abstract)
[15] 柴强, 杨彩红, 黄高宝. 干旱区绿洲不同种植模式作物的耗水特征. 中国沙漠, 2010, 30: 1153–1159
Chai Q, Yang C H, Huang G B. Characteristics of crop water consumption of different cropping patterns in an arid oasis. J Desert Res, 2010, 30: 1153–1159 (in Chinese with English abstract)
[16] 杨涛, 梁宗锁, 薛吉全, 康绍忠. 不同玉米品种水分利用效率的差异性研究. 农业工程学报, 2005, 21(10): 21–25
Yang T, Liang Z S, Xue J Q, Kang S Z. Diversity of water use efficiency of various maize varieties. Trans CSAE, 2005, 21(10): 21–25 (in Chinese with English abstract)
[17] 柴强, 杨彩红, 黄高宝. 交替灌溉对西北绿洲区小麦间作玉米水分利用的影响. 作物学报, 2011, 37: 1623–1630
Chai Q, Yang C H, Huang G B. Water use characteristics of alternately irrigated wheat/maize intercropping in oasis region of northwestern China. Acta Agron Sin, 2011, 37: 1623–1630 (in Chinese with English abstract)
[18] Jahansooz M R, Iam Y, Coventry D R. Radiation- and water-use associated with growth and yields of wheat and chickpea in sole and mixed crops. Eur J Agron, 2007, 26: 275–282
[19] 毛振强, 张银锁, 宇振荣. 基于作物生长模型的夏玉米灌溉需求分析. 作物学报, 2003, 29: 419–426
Mao Z Q, Zhang Y S, Yu Z R. Water requirement and irrigation scenarios of summer maize production aided by crop growth simulation model. Acta Agron Sin, 2003, 29: 419–426 (in Chinese with English abstract)
[20] 王立明, 杨如萍, 陈光荣, 张国宏. 旱作大豆播种密度对产量和水分利用效率的影响. 中国农学通报, 2015, 31(12): 45–49
Wang L M, Yang R P, Chen G R, Zhang G H. Effects of planting density on grain yield and water use efficiency of dry-land soybean. Chin Agric Bull, 2015, 31(12): 45–49 (in Chinese with English abstract)
[21] 马淑蓉. 密度对不同小豆品种生理特性及农田小气候特征的影响. 西北农林科技大学硕士论文, 陕西杨凌, 2013
Ma S R. Effect of Density on Farmland Microclimate and Physiological Characteristics in Different Adzuki Bean (Lines). MS Thesis of Northwest A&F University, Yangling, China, 2013 (in Chinese with English abstract)
[22] 陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36: 1153–1160
 Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density tolerance analysis for maize hybrids. Acta Agron Sin, 2010, 36: 1153–1160 (in Chinese with English abstract)
[23] 滕园园, 赵财, 柴强, 胡发龙, 冯福学. 氮肥后移对玉米间作豌豆耗水特性的调控效应. 作物学报, 2016, 42: 446–455
Teng Y Y, Zhao C, Chai Q, Hu F L, Feng F X. Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system. Acta Agron Sin, 2016, 42: 446–455 (in Chinese with English abstract)
[24] 王健, 蔡焕杰, 康燕霞. 夏玉米棵间土面蒸发与蒸发蒸腾比例研究. 农业工程学报, 2007, 23(4): 17–22
Wang J, Cai H J, Kang Y X. Ratio of soil evaporation to the evapotranspiration for summer maize field. Trans CSAE, 2007, 23(4): 17–22 (in Chinese with English abstract)
[25] Hauggaard-Nielsen H, Andersen M K, Jornsgaard B. Density and relative frequency effects on competitive interactions and resource use in pea-barley intercrops. Field Crops Res, 2006, 95: 256–267
[26] Zhang B C, Huang G B, Feng M. Effect of limited single irrigation on yield of winter wheat and spring maize relay intercropping. Pedosphere, 2007, 17: 529–537
[27] 李豪圣, 宋健民, 刘爱峰, 程敦公, 王西芝, 杜长林. 播期和种植密度对超高产小麦“济麦22”产量及其构成因素的影响. 中国农学通报, 2011, 27(5): 243–248
Li H S, Song J M, Liu A F, Cheng G G, Wang X Z, Du C L. Effect of sowing time and planting density on yield and components of “Jimai 22” with super-high yield. Chin Agric Bull, 2011, 27(5): 243–248 (in Chinese with English abstract)
[28] 李春奇, 王庭梁, 程相文, 曹偌遥, 李芸, 芦鹏. 种植密度对夏玉米穗位叶片解剖结构的影响. 作物学报, 2011, 37: 2099–2105
Li C Q, Wang T L, Cheng X W, Cao N Y, Li Y, Lu P. Effects of plant density on anatomical structure of ear leaf in summer maize. Acta Agron Sin, 2011, 37: 2099–2105 (in Chinese with English abstract)
[29] 肖鑫辉, 李向华, 刘洋, 张应, 王克晶. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011, 37: 1301–1307
Xiao X H, Li X H, Liu Y, Zhang Y, Wang K J. Effect of plant density on grain yield dry matter accumulation and partitioning in summer maize cultivar Denghai 661. Acta Agron Sin, 2011, 37: 1301–1307 (in Chinese with English abstract)
[30] 杜太生, 康绍忠, 王振昌, 王锋, 杨秀英, 苏兴礼. 隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应. 作物学报, 2007, 33: 1982–1990
Du T S, Kang S Z, Wang Z C, Wang F, Yang X Y, Su X L. Responses of cotton growth, yield, and water use efficiency to alternate furrow irrigation. Acta Agron Sin, 2007, 33: 1982–1990 (in Chinese with English abstract)
[31] 钱春荣, 于洋, 宫秀杰, 姜宇博, 赵杨, 王俊河. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应. 作物学报, 2012, 38: 1864–1874
Qian C R, Yu Y, Gong X J, Jiang Y B, Zhao Y, Wang J H . Response of grain yield to plant density and nitrogen application rate for maize hybrids released from different eras in Heilongjiang Province. Acta Agron Sin, 2012, 38: 1864–1874 (in Chinese with English abstract)
[32] 李儒, 崔荣美, 贾志宽, 韩清芳, 路文涛, 侯贤清. 不同沟垄覆盖方式对冬小麦土壤水分及水分利用效率的影响. 中国农业科学, 2011, 44: 3312–3322
Li R, Cui R M, Jia Z K, Han Q F, Lu W T, Hou X Q. Effects of different furrow-ridge mulching ways on soil moisture and water use efficiency of winter wheat. Sci Agric Sin, 2011, 44: 3312–3322 (in Chinese with English abstract)

[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[4] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[5] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[6] FANG Yan-Jie, ZHANG Xu-Cheng, HOU Hui-Zhi, YU Xian-Feng, WANG Hong-Li, MA Yi-Fan, ZHANG Guo-Ping, LEI Kang-Ning. Effects of whole soil-plastic mulching system and fertilization rates on water consumption characteristics and yield of tartary buckwheat in arid land [J]. Acta Agronomica Sinica, 2021, 47(6): 1149-1161.
[7] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[8] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[9] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[10] SHI Meng-Xia, ZHANG Jia-Xiao, SHI Xiao-Yu, CHU Qing-Quan, CHEN Fu, LEI Yong-Deng. Water use efficiency of several water-intensive crops in Hebei province in recent 20 years [J]. Acta Agronomica Sinica, 2021, 47(12): 2450-2458.
[11] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[12] ZHANG Xu-Cheng, MA Yi-Fan, YU Xian-Feng, HOU Hui-Zhi, WANG Hong-Li, FANG Yan-Jie, ZHANG Guo-Ping, LEI Kang-Ning. Effects of tillage depth on soil hydrological characteristics and potato yield on northwest Loess Plateau [J]. Acta Agronomica Sinica, 2021, 47(1): 138-148.
[13] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[14] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
[15] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!