Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (09): 1357-1369.doi: 10.3724/SP.J.1006.2017.01272

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Supplemental Irrigation on Water Consumption Characteristics, Grain Yield and Water Use Efficiency in Winter Wheat under Different Soil Moisture Conditions at Seeding Stage

LIN Xiang,WANG Dong*   

  1. Shandong Agricultural University / State Key Laboratory of Crop Biology / Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, Tai’an 271018, China
  • Received:2016-09-26 Revised:2017-04-19 Online:2017-09-12 Published:2017-05-23
  • Contact: wang dong, E-mail: wangd@sdau.edu.cn, Tel: 0538-8240096 E-mail:sdwslinxiang@163.com
  • Supported by:

    Shandong Agricultural University / State Key Laboratory of Crop Biology / Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, Tai’an 271018, China

Abstract:

Water shortage and unbalanced precipitation distribution are major problems threatening agricultural sustainability, especially winter wheat production, in the Huang-Huai Plain of China and water-saving cultivation with limited irrigation is a promising technique in this area. It is important to understand the regulation effect and physiological basis of supplemental irrigation on grain yield and water use efficiency (WUE) of winter wheat under different soil moisture conditions at seeding stage. In the 2013–2014 and 2014–2015 winter wheat growing seasons, we designed three soil (0–100 cm) moisture conditions at seeding stage (201.5 mm for A, 266.3 mm for B, and 317.0 mm for C) by supplemental irrigation and four irrigation treatments under each soil moisture condition (no-irrigation; irrigated twice at jointing and anthesis stages; irrigated thrice at over-wintering, jointing and anthesis stages; and irrigated thrice at seeding, jointing and anthesis stages). The water consumption characteristics, photosynthesis of flag leaves, dry matter accumulation and distribution, grain yield and WUE of winter wheat were investigated. The soil water consumption and the total water consumption during wheat growth increased when more soil water was available at seeding stage. Wheat mainly consumed precipitation and irrigation water under condition A and B. Supplemental irrigation at seeding or over-wintering stage resulted in significant increase of soil water consumption under condition A, but decrease of soil water consumption under condition B. Under condition C, wheat mainly consumed soil water, followed by precipitation and irrigation water. In this situation, supplemental irrigation at seeding and over-wintering stages resulted in significant increase of total water consumption but no significant effect on soil water consumption. Our results showed high yield but low WUE under condition A and high yield and high WUE under condition B, when watering at seeding, jointing and anthesis stages. Under condition C, high yield and high WUE were obtained only when watering at jointing and anthesis stages, whereas, supplemental irrigations at seeding and over-wintering stages were unnecessary. We conclude that available soil water at seeding stage is the basis and important to reasonable supplemental irrigation during wheat growth.

Key words: Available soil water at seeding stage, Supplemental irrigation, Water consumption characteristics, Dry matter accumulation and distribution, Grain yield

[1]梅旭荣, 康绍忠, 于强, 黄元仿, 钟秀丽, 龚道枝, 霍再林, 刘恩科. 协同提升黄淮海平原作物生产力与农田水分利用效率途径. 中国农业科学, 2013, 46: 1149–1157
Mei X R, Kang S Z, Yu Q, Huang Y F, Zhong X L, Gong D Z, Huo Z L, Liu E K. Pathways to synchronously improving crop productivity and field water use efficiency in the North China Plain. Sci Agric Sin, 2013, 46: 1149–1157 (in Chinese with English abstract)
[2]张雪靓, 孔祥斌. 黄淮海平原地下水危机下的耕地资源可持续利用. 中国土地科学, 2014, 28(5): 90–96
Zhang X J, Kong X B. Cropland sustainable use impacted by groundwater depletion in China’s HHH Plains. Chin Land Sci, 2014, 28(5): 90–96 (in Chinese with English abstract)
[3]刘荣花, 方文松, 朱自玺, 马志红, 许蓬蓬, 李树岩. 黄淮平原冬小麦底墒水分布规律. 生态学杂志, 2008, 27: 2105–2110
Liu R H, Fang W S, Zhu Z X, Ma Z H, Xu P P, Li S Y. Distribution pattern of available soil water at planting for winter wheat in Huanghuai Plain. Chin J Ecol, 2008, 27: 2105–2110 (in Chinese with English abstract)
[4]徐建文, 居辉, 梅旭荣, 刘勤, 杨建莹. 近30年黄淮海平原干旱对冬小麦产量的潜在影响模拟. 农业工程学报, 2015, 31(6): 150–158
Xu J W, Ju H, Mei X R, Liu Q, Yang J Y. Simulation on potential effects of drought on winter wheat in Huang-Huai-Hai Plain from 1981 to 2010. Trans Chin Soc Agric Eng, 2015, 31(6): 150–158 (in Chinese with English abstract)
[5]罗俊杰, 黄高宝. 底墒对旱地冬小麦产量和水分利用效率的影响研究. 灌溉排水学报, 2009, 28(3): 102–104
Luo J J, Huang G B. Effects of different soil water before sowing on winter wheat yield and WUE in semi-arid areas. J Irrig Drain, 2009, 28(3): 102–104 (in Chinese with English abstract)
[6]罗俊杰, 王勇, 樊廷录. 旱地不同生态型冬小麦水分利用效率对播前底墒的响应. 干旱地区农业研究, 2010, 28(1): 61–65
Luo J J, Wang Y, Fan T L. Effect of winter wheat yield and WUE with different soil water before sowing in semi-arid areas. Agric Res Arid Areas, 2010, 28(1): 61–65 (in Chinese with English abstract)
[7]姚宁, 宋利兵, 刘健, 冯浩, 吴淑芳, 何建强. 不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响. 中国农业科学, 2015, 48: 2379–2389
Yao N, Song L B, Liu J, Feng H, Wu S F, He J Q. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region, Sci Agric Sin, 2015, 48: 2379–2389 (in Chinese with English abstract)
[8]褚鹏飞, 王东, 张永丽, 王小燕, 王西芝, 于振文. 灌水时期和灌水量对小麦耗水特性、籽粒产量及蛋白质组分含量的影响. 中国农业科学, 2009, 42: 1306–1315
Chu P F, Wang D, Zhang Y L, Wang X Y, Wang X Z, Yu Z W. Effects of irrigation stage and amount on water consumption characteristics, grain yield and content of protein components of wheat. Sci Agric Sin, 2009, 42: 1306–1315 (in Chinese with English abstract)
[9]Li Q Q, Dong B D, Qiao Y Z, Liu M Y, Zhang J W. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric Water Manag, 2010, 97: 1676–1682
[10]秦耀东. 土壤物理学. 北京: 高等教育出版社, 2003. p 7
Qin Y D. Soil Physics. Beijing: Higher Education Press, 2003. p 7 (in Chinese)
[11]Wang D, Yu Z W, White P J. The effect of supplemental irrigation after jointing on leaf senescence and grain ?lling in wheat. Field Crops Res, 2013, 151: 35–44
[12]Gardner W H. Water content. In: Klute, A. Eds. Methods of Soil Analysis: Part 1. Agronomy Monograph. 9. 2nd edn. Verlag Amer. Soc. Agron. und Soil Sci. Soc. Amer, Madison (Wisconsin), 1986. pp 493–544
[13]黄玲, 高阳, 邱新强, 李新强, 申孝军, 孙景生, 巩文军, 段爱旺. 灌水量和时期对不同品种冬小麦产量和耗水特性的影响. 农业工程学报, 2013, 29(14): 99–108
Huang L, Gao Q, Qiu X Q, Li X Q, Shen X J, Sun J S, Gong W J, Duan A W. Effects of irrigation amount and stage on yield and water consumption of different winter wheat cultivars. Trans CSAE, 2013, 29(14): 99–108 (in Chinese with English abstract)
[14]Lv L H, Wang H J, Jia X L,Wang Z M. Analysis on water requirement and water-saving amount of wheat and corn in typical regions of the North China Plain. Front Agric China, 2012, 5: 556–562
[15]Chattaraj S, Chakraborty D, Garg R N, Singh G P, Gupta V K, Singh S, Singh R. Hyperspectral remote sensing for growth-stage-specific water use in wheat. Field Crops Res, 2013, 144: 179–191
[16]田中伟, 王方瑞, 戴廷波, 蔡剑, 姜东, 曹卫星. 小麦品种改良过程中物质积累转运特性与产量的关系. 中国农业科学, 2012, 45: 801–808
Tian Z W, Wang F R, Dai T B, Cai J, Jiang D, Cao W X. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield. Sci Agric Sin, 2012, 45: 801–808 (in Chinese with English abstract)
[17]Sepaskhah A R, Tafteh A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric Water Manag, 2012, 112: 55–62
[18]Ma Y, Feng S Y, Song X F. A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain. Agric Water Manag, 2013, 127: 13–24
[19]王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2): 27–32
Wang S F, Zhang X Y, Pei D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Trans CSAE, 2006, 22(2): 27–32 (in Chinese with English abstract)
[20]Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. Eur J Agron, 2008, 28: 138–147
[21]董浩, 陈雨海, 周勋波. 灌溉和种植方式对冬小麦耗水特性及干物质生产的影响. 应用生态学报, 2013, 24: 1871–1878
Dong H, Chen Y H, Zhou X B. Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production. Chin J Appl Ecol, 2013, 24: 1871–1878 (in Chinese with English abstract)
[22]Bahrani A, Abad H H S, Aynehband A. Nitrogen remobilization in wheat as influenced by nitrogen application and post-anthesis water deficit during grain filling. Afr J Biotechnol, 2011, 10: 10585v10594
[23]黄彩霞, 柴守玺, 赵德明, 康燕霞. 灌溉对干旱区冬小麦干物质积累、分配和产量的影响. 植物生态学报, 2014, 38: 1333–1344
Huang C X, Chai S X, Zhao D M, Kang Y X. Effects of irrigation on accumulation and distribution of dry matter and grain yield in winter wheat in arid regions of China. Chin J Plant Ecol, 2014, 38: 1333–1344 (in Chinese with English abstract)
[24]Schilinger W F, Schofstoll S E, Alldredge J R. Available water and wheat grain yield relations in a Mediterranean climate. Field Crop Res, 2008, 109: 45–49
[25]任三学, 赵花荣, 郭安红, 刘庚山, 安顺清. 底墒对冬小麦植株生长及产量的影响. 麦类作物学报, 2005, 25(4): 79–85
Ren S X, Zhao H R, Guo A H, Liu G S, An S Q. Impact of available soil water at planting on plant growth and yield of winter wheat. J Triticeae Crops, 2005, 25(4): 79–85 (in Chinese with English abstract)
[26]张永平, 王志敏, 王璞, 赵明. 冬小麦节水高产栽培群体光合特征. 中国农业科学, 2003, 36: 1143–1149
Zhang Y P, Wang Z M, Wang P, Zhao M. Canopy photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Sci Agric Sin, 2003, 36: 1143–1149 (in Chinese with English abstract)
[27]Li J M, Inanaga S, Li Z H, Eneji A E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric Water Manag, 2005, 76: 8–23
[28]刘超, 汪有科, 张立强. 土壤水分特征曲线在作物非充分灌溉适宜水分下限确定中的应用. 灌溉排水学报, 2007, 26(6): 76–78
Liu C, Wang Y K, Zhang L Q. The application of soil water characteristic curve in determination of lower limit of suitable soil moisture in crop non-sufficient irrigation. J Irrig Drain, 2007, 26(6): 76–78 (in Chinese with English abstract)
[29]张富仓, 李志军, 康绍忠. 用热电偶湿度计测定土壤水势的方法研究. 西北农林科技大学(自然科学版), 2001, 29(1): 55–58
Zhang F C, Li Z J, Kang S Z. Measurement of soil water potential with thermocouple psychrometers. J Northwest Sci-Tech Univ Agric & For (Nat Sci Edn), 2001, 29(1): 55–58 (in Chinese with English abstract)
[30]熊毅, 李庆逵. 中国土壤. 北京: 科学出版社, 1978. pp 329–335
Xiong Y, Li Q K. China Soil. Beijing: Science Press, 1978. pp 329–335 (in Chinese)
[31]王德梅, 于振文, 许振柱. 高产条件下不同小麦品种耗水特性和水分利用效率的差异. 生态学报, 2009, 29: 6552–6560
Wang D M, Yu Z W, Xu Z Z. Water consumption characteristics and water use efficiency of different wheat cultivars with high yield. Acta Ecol Sin, 2009, 29: 6552–6560 (in Chinese with English abstract)

[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[4] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[5] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[6] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[7] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[8] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[9] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[10] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[11] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
[12] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[13] Ming-Sheng MA, Xian-Shi GUO, Yan-Lan LIU. Effects of full biodegradable film on soil water status and yield and water use efficiency of spring wheat in dryland [J]. Acta Agronomica Sinica, 2020, 46(12): 1933-1944.
[14] LIAO Ping,LIU Lei,HE Yu-Xuan,TANG Gang,ZHANG Jun,ZENG Yong-Jun,WU Zi-Ming,HUANG Shan. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system [J]. Acta Agronomica Sinica, 2020, 46(01): 84-92.
[15] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!