Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (02): 228-237.doi: 10.3724/SP.J.1006.2020.92032
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
SU Da1,2,WU Liang-Quan2,K. Rasmussen Søren3,ZHOU Lu-Jian4,PAN Gang4,CHENG Fang-Min4,*()
[1] |
Noulas C, Tziouvalekas M, Karyotis T . Zinc in soils, water and food crops. J Trace Elem Med Biol, 2018,49:252-260.
doi: 10.1016/j.jtemb.2018.02.009 pmid: 29472130 |
[2] |
Hefferon K . Biotechnological approaches for generating zinc-enriched crops to combat malnutrition. Nutrients, 2019,11:253.
doi: 10.1186/1471-2148-11-253 pmid: 21917168 |
[3] |
Maqbool M A, Beshir A . Zinc biofortification of maize (Zea mays L.): Status and challenges. Plant Breed, 2019,138:1-28.
doi: 10.1111/pbr.2019.138.issue-1 |
[4] |
Jaksomsak P, Tuiwong P, Rerkasem B, Guild G E, Palmer L J, Stangoulis J C, Promuthai C . The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four Thai rice varieties with different grain zinc. J Cereal Sci, 2018,79:6-12.
doi: 10.1016/j.jcs.2017.09.004 |
[5] |
Li W, Huang J, Zhao H, Tan Y, Cui H, Poirier Y, Shu Q . Production of low phytic acid rice by hairpin RNA- and artificial microRNA-mediated silencing ofOsMIK in seeds. Plant Cell Tissue Organ Cult, 2014,119:15-25.
doi: 10.1007/s11240-014-0510-8 |
[6] |
Liang J, Li Z, Tsuji K, Nakano K, Nout M J R, Hamer R J . Milling characteristics and distribution of phytic acid and zinc in long-, medium- and short-grain rice. J Cereal Sci, 2008,48:83-91.
doi: 10.1016/j.jcs.2007.08.003 |
[7] |
Perera I, Seneweera S, Hirotsu N . Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice, 2018,11:4.
doi: 10.1186/s12284-018-0200-y pmid: 29327163 |
[8] |
Julia C, Wissuwa M, Kretzschmar T, Jeong K, Rose T J . Phosphorus uptake, partitioning and redistribution during grain filling in rice. Ann Bot-london, 2016,118:1151-1162.
doi: 10.1093/aob/mcw164 pmid: 27590335 |
[9] |
Ova E A, Kutman U B, Ozturk L, Cakmak I . High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant Soil, 2015,393:147-162.
doi: 10.5696/2156-9614-9.24.191212 pmid: 31893173 |
[10] | Saneoka H, Koba T . Plant growth and phytic acid accumulation in grain as affected by phosphorus application in maize (Zea mays L.). Grassl Sci, 2003,48:485-489. |
[11] | Miller G A, Youngs V L . Environmental and cultivar effects on oat phytic acid concentration. Cereal Chem, 1980,57:189-191. |
[12] |
Raboy V, Dickinson D B . Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc. Plant Physiol, 1984,75:1094-1098.
doi: 10.1104/pp.75.4.1094 pmid: 16663741 |
[13] |
Noack S R, Mclaughlin M J, Smernik R J, Mcbeath T M, Armstrong R . Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant Soil, 2014,378:125-137.
doi: 10.1007/s11104-013-2015-3 |
[14] |
Su D, Zhou L J, Zhao Q, Pan G, Cheng F M . Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. J Agric Food Chem, 2018,66:1601-1611.
doi: 10.1021/acs.jafc.7b04883 pmid: 29401375 |
[15] |
Raboy V . Seeds for a better future: ‘low phytate’, grains help to overcome malnutrition and reduce pollution. Trends Plant Sci, 2001,6:458-462.
doi: 10.1016/s1360-1385(01)02104-5 pmid: 11590064 |
[16] |
Zhang W, Liu D, Liu Y, Chen X, Zou C . Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.). J Agric Food Chem, 2017,65:1473-1482.
doi: 10.1021/acs.jafc.6b04778 pmid: 28171726 |
[17] |
Imran M, Rehim A, Sarwar N, Hussain S . Zinc bioavailability in maize grains in response of phosphorous-zinc interaction. J Plant Nutr Soil Sc, 2016,179:60-66.
doi: 10.1002/jpln.v179.1 |
[18] |
Liu Z H, Cheng F M, Cheng W D, Zhang G P . Positional variations in phytic acid and protein content within a panicle ofjaponica rice. J Cereal Sci, 2005,41:297-303.
doi: 10.1016/j.jcs.2004.09.010 |
[19] |
Bi J, Liu Z, Lin Z, Alim M A, Li G, Wang S H, Ding Y F . Phosphorus accumulation in grains ofjaponica rice as affected by nitrogen fertilizer. Plant Soil, 2013,369:231-240.
doi: 10.1007/s11104-012-1561-4 |
[20] |
Wilcox J R, Premachandra G S, Young K A, Raboy V . Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci, 2000,40:1601-1605.
doi: 10.2135/cropsci2000.4061601x |
[21] |
Zhou L, Ye Y, Zhao Q, Du X, Zakari S A, Su D, Pan G, Chen F M . Suppression of ROS generation mediated by higher InsP3 level is critical for the delay of seed germination in lpa rice. Plant Growth Regul, 2018,85:411-424.
doi: 10.1007/s10725-018-0402-8 |
[22] |
Wei Y Y, Shohag M, Wang Y Y, Lu L L, Wu C Y, Yang X . Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. J Agric Food Chem, 2012,60:1871-1879.
doi: 10.1021/jf205025b pmid: 22273463 |
[23] |
Miller L V, Krebs N F, Hambidge K M . A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J Nutr, 2007,137:135-141.
doi: 10.1093/jn/137.1.135 pmid: 17182814 |
[24] |
Brombach C, Manorut P, Kolambage-Dona P P P, Ezzeldin M F, Chen B, Corns W T, Feldmann J, Krupp E M . Methylmercury varies more than one order of magnitude in commercial European rice. Food Chem, 2017,214:360-365.
doi: 10.1016/j.foodchem.2016.07.064 pmid: 27507486 |
[25] |
戴云云, 丁艳锋, 刘正辉, 王强盛, 李刚华, 王绍华 . 花后水稻穗部夜间远红外增温处理对稻米品质的影响. 中国水稻科学, 2009,23:414-420.
doi: 10.3969/j.issn.1001-7216.2009.04.12 |
Dai Y Y, Ding Y F, Liu Z H, Wang Q S, Li G H, Wang S H . Effects of elevated night temperature by far-infrared radiation at grain filling on grain quality of rice. Chin J Rice Sci, 2009,23:414-420 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7216.2009.04.12 |
|
[26] |
Coelho C M M, Santos J C P, Tsai S M, Vitorello V A V C . Seed phytate content and phosphorus uptake and distribution in dry bean genotypes. Braz J Plant Physiol, 2002,14:51-58.
doi: 10.1590/S1677-04202002000100007 |
[27] |
Sompong U, Somta P, Raboy V, Srinives P . Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean [Vigna radiata(L.) Wilczek]. Breed Sci, 2012,62:87-92.
doi: 10.1270/jsbbs.62.87 pmid: 23136518 |
[28] |
Taliman N A, Dong Q, Echigo K, Raboy V, Saneoka H . Effect of phosphorus fertilization on the growth, photosynthesis, nitrogen fixation, mineral accumulation, seed yield, and seed quality of a soybean low-phytate line. Plants, 2019,8:119.
doi: 10.3390/plants8050119 pmid: 31071932 |
[29] |
Park M, Singvilay O, Shin W, Kim E, Chung J, Sa T . Effects of long-term compost and fertilizer application on soil phosphorus status under paddy cropping system. Commun Soil Sci Plan, 2004,35:1635-1644.
doi: 10.1081/CSS-120038559 |
[30] |
Zhang W, Liu D, Li C, Cui Z, Chen X, Russell Y, Zou C . Zinc accumulation and remobilization in winter wheat as affected by phosphorus application. Field Crops Res, 2015,184:155-161.
doi: 10.1016/j.fcr.2015.10.002 |
[31] | Zhang J, Wu L H, Wang M Y . Iron and zinc biofortification in polished rice and accumulation in rice plant (Oryza sativa L.) as affected by nitrogen fertilization. Acta Agric Scand B-S P, 2008,58:267-272. |
[32] |
Xue Y F, Yue S C, Zhang Y Q, Cui Z, Chen X, Yang F, Cakmak I, McGrath S P, Zhang F S, Zou C Q, . Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant Soil, 2012,361:153-163.
doi: 10.1007/s11104-012-1510-2 |
[33] |
Kutman U B, Yildiz B, Cakmak I . Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil, 2011,342:149-164.
doi: 10.1007/s11104-010-0679-5 |
[34] |
Bolland M D A . Residual value of superphosphate and Queensland rock phosphate measured using yields of serradella, burr medic and subterranean clover grown in rotation with wheat and bicarbonate-extractable soil phosphorus. Commun Soil Sci Plan, 1993,24:1243-1269.
doi: 10.1080/00103629309368874 |
[35] |
Orabi A A, Mashadi H, Abdallah A, Morsy M F . Effect of zinc and phosphorus on the grain yield of corn (Zea mays L.) grown on a calcareous soil. Plant Soil, 1981,63:291-294.
doi: 10.1007/BF02374607 |
[36] |
Zhang Y, Deng Y, Chen R, Cui Z L, Chen X P, Yost R, Zhang F S, Zou C Q . The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant Soil, 2012,361:143-152.
doi: 10.1007/s11104-012-1238-z |
[37] |
Liang J, Han B, Nout M J, Hamer R J . Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem, 2008,110:821-828.
doi: 10.1016/j.foodchem.2008.02.064 pmid: 26047266 |
[38] |
Bohn L, Josefsen L, Meyer A A, Rasmussen S K . Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. J Agr Food Chem, 2007,55:7547-7552.
doi: 10.1021/jf071191t pmid: 17696444 |
[39] | 苏达, 吴良泉, Søren K R, 周庐建, 程方民 . 低植酸水稻种质资源筛选、遗传生理调控与环境生态适应性研究进展. 中国水稻科学, 2019,33:95-107. |
Su D, Wu L Q, Søren K R, Zhou L J, Cheng F M . Research advances on the low phytic acid rice breeding and their genetic physiological regulation and environmental adaptability. Chin J Rice Sci, 2019,33:95-107 (in Chinese with English abstract). |
[1] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[2] | SU Da, YAN Xiao-Jun, CAI Yuan-Yang, LIANG Tian, WU Liang-Quan, MUHAMMAD Atif Muneer, YE De-Lian. Effects of phosphorus fertilizer on kernel phytic acid and zinc bioavailability in sweet corn [J]. Acta Agronomica Sinica, 2022, 48(1): 203-214. |
[3] | LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914. |
[4] | YAN Xiao-Jun, YE De-Lian, SU Da, LI Fang, ZHENG Chao-Yuan, WU Liang-Quan. Effects of phosphorus application on phosphorus uptake and utilization of sweet corn [J]. Acta Agronomica Sinica, 2021, 47(1): 169-176. |
[5] | CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao,HAN Kun. The root-layer regulation based on the depth of phosphate fertilizer application of summer maize improves soil nitrogen absorption and utilization [J]. Acta Agronomica Sinica, 2020, 46(02): 238-248. |
[6] | TANG Jian,TANG Chuang,GUO Bao-Wei,ZHANG Cheng-Xin,ZHANG Zhen-Zhen,WANG Ke,ZHANG Hong-Cheng,CHEN Heng,SUN Ming-Zhu. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice [J]. Acta Agronomica Sinica, 2020, 46(01): 117-130. |
[7] | Tian-Yi YU,Xiao-Liang LI,Ya LU,Xue-Wu SUN,Yong-Mei ZHENG,Zheng-Feng WU,Pu SHEN,Cai-Bin WANG. Effect of phosphorus (P) on nitrogen (N) uptake and utilization in peanut [J]. Acta Agronomica Sinica, 2019, 45(6): 912-921. |
[8] | YUAN Yi-Chuan, CHEN Xiao-Yu, LI Ming-Ming, LI Ping, JIA Ya-Tao, HAN Yuan-Huai, XING Guo-Fang. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(4): 601-612. |
[9] | CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao. Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage [J]. Acta Agronomica Sinica, 2019, 45(10): 1565-1575. |
[10] | Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009. |
[11] | Chao HAN,Fang-Fu XU,Jin-Long BIAN,Dong XU,Shi QIU,Chen ZHAO,Ying ZHU,Guo-Dong LIU,Hong-Cheng ZHANG,Hai-Yan WEI. Effects of Mechanical Planting Methods on Yield and Quality of Japonica Rice with Good Taste and Different Growth Durations in Huaibei Region [J]. Acta Agronomica Sinica, 2018, 44(11): 1681-1693. |
[12] | Xin HUANG,Yao-Guang LI,Wan SUN,Jun-Feng HOU,Ying MA,Jian ZHANG,Dong-Yun MA,Chen-Yang WANG,Tian-Cai GUO. Variation of Grain Iron and Zinc Contents and Their Bioavailability of Wheat Cultivars with Different-colored Grains under Combined Nitrogen and Phosphorus Fertilization [J]. Acta Agronomica Sinica, 2018, 44(10): 1506-1516. |
[13] | HU De-Yi, CAI Lu, CHEN Guang-Deng, ZHANG Xi-Zhou, Chunji LIU. Mapping QTLs for Phosphorus Efficiency at Tillering Stage under Different Phosphorus Levels in Barley (Hordeum vulgare L.) [J]. Acta Agron Sin, 2017, 43(12): 1746-1759. |
[14] | CHEN Meng-Yun, LI Xiao-Feng, CHENG Jin-Qiu, REN Hong-Ru, LIANG Jian, ZHANG Hong-Cheng,HUO Zhong-Yang*. Effects of Total Straw Returning and Nitrogen Application Regime on Grain Yield and Quality in Mechanical Transplanting Japonica Rice with Good Taste Quality [J]. Acta Agron Sin, 2017, 43(12): 1802-1816. |
[15] | HU Qun,XIA Min,ZHANG Hong-Cheng,CAO Li-Qiang,GUO Bao-Wei,WEI Hai-Yan,CHEN Hou-Cun,HAN Bao-Fu. Effect of Nitrogen Application Regime on Yield and Quality of Mechanical Pot-seedling Transplanting Rice with Good Taste Quality [J]. Acta Agron Sin, 2017, 43(03): 420-431. |
|