Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 684-690.doi: 10.3724/SP.J.1006.2021.02035

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and application of functional marker for high nitrogen use efficiency and chilling tolerance gene OsGRF4 in rice

SUN Ping-Yong1(), ZHANG Wu-Han1, ZHANG Li2, SHU Fu1, HE Qiang1, PENG Zhi-Rong1, DENG Hua-Feng1,3,*()   

  1. 1State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, Hunan, China
    2Nuclear Agriculture and Space Breeding Research Institute, Changsha 410125, Hunan, China
    3Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
  • Received:2020-05-22 Accepted:2020-08-19 Online:2021-04-12 Published:2020-09-10
  • Contact: DENG Hua-Feng E-mail:zlspy23@126.com;dhf@hhrrc.ac.cn
  • Supported by:
    Natural Science Foundation of Hunan(2019JJ50427);Natural Science Foundation of Hunan(2020JJ5287);Hunan Province Key Research and Development Program Project(2018NK1020-1);Hunan Agricultural Science and Technology Innovation Project(2020CX08);Hunan Agricultural Science and Technology Innovation Project(2019TD06)

Abstract:

The use of molecular marker-assisted selection (MAS) to breed rice with high nitrogen-use efficiency is one of the most effective methods to reduce the amount of nitrogen fertilizer quantity and to develop the green and sustainable agriculture. The gene growth-regulating factor 4 (OsGRF4) encodes a growth regulatory factor protein, and the mutation in the coding region from the nucleotides TC to AA in 487 and 488 substituted the amino acid serine for lysine, which resulting in enhancing nitrogen-use efficiency, increasing grain yield, and improving chilling tolerance in rice. In order to improve the selection efficiency of OsGRF4 in rice breeding, an allele-specific PCR (AS-PCR) marker combination, PF+DMR+PR and PF+XMR+PR, was developed based on the single nucleotide polymorphism in the functional region of the OsGRF4 alleles. The functional marker was used to identify genotypes of different varieties and an F2 population derived from Chuandali/Jusuidao. The three different genotypes of OsGRF4 locus could be accurately distinguished, which was further confirmed by sequencing. This functional marker is simple to operate and low-cost, and could provide a technical support when using MAS to breed new rice varieties of high nitrogen-use efficiency, high yields, and increased chilling tolerance.

Key words: rice, high nitrogen-use efficiency, chilling tolerance, OsGRF4 gene, AS-PCR

Fig. 1

Strategy of functional markers design for OsGRF4 SNP3 indicates functional polymorphic sites; PF and PR are outer primers; DR and XR are reverse inner primers, which matching the bases AA and TC, respectively. A mismatch base C was introduced in the 3′ end of DR and XR to develop DMR and XMR. The arrows indicate amplification direction of the primers."

Fig. 2

PCR amplification of Chuandali and Jusuidao using different primer pairs The singular lane is ‘Chuandali’, the dual lane is ‘Jusuidao’. M: 100 bp marker; 1, 2: PF+PR; 3, 4: PF+DR; 5, 6: PF+XR; 7, 8: PF+DR+PR; 9, 10: PF+XR+PR; 11, 12: PF+DMR; 13, 14: PF+XMR; 15, 16: PF+DMR+PR; 17, 18: PF+XMR+PR."

Fig. 3

Molecular detection of OsGRF4 genotypes by functional markers in different rice varieties A: PF+DMR+PR; B: PF+XMR+PR; M: 100 bp marker; 1: Chuandali; 2: Jusuidao; 3: NIL-OsGRF4; 4: NIL-Osgrf4; 5-24: Nongxiang 99, Yuzhenxiang, Xiangwanxian 17, Gang 46B, BL122, Jiafuzhan, Nongxiang 18, Minghui 86, Xinyinzhan, Yuzhuxiang, R700, Fengyuan B, Nongxiang 29, Nanyangzhan, R299, 02428, C418, P7144, Nongxiang 16, CY016."

Fig. 4

Molecular detection of genotypes by co-separation marker GL2-11 in F2 population derived from Chuandali/Jusuidao M: 100 bp marker; 1: Chuandali; 2: Jusuidao; 3-24: individual plants isolated from F2 population."

Fig. 5

Molecular detection of OsGRF4 genotypes by functional markers in F2 population derived from Chuandali/Jusuidao M: 100 bp marker; A: PF+DMR+PR; B: PF+XMR+PR; 1: Chuandali; 2: Jusuidao; 3-24: individual plants isolated from F2 population."

[1] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher gain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015,175:47-55.
doi: 10.1016/j.fcr.2015.02.007
[2] 霍中洋, 李杰, 张洪程, 戴其根, 许轲, 魏海燕, 龚金龙. 不同种植方式下水稻氮素吸收利用的特性. 作物学报, 2013,38:1908-1919.
Huo Z Y, Li J, Zhang H C, Dai Q G, Xu K, Wei H Y, Gong J L. Characterization of nitrogen uptake and utilization in rice under different planting methods. Acta Agron Sin, 2013,38:1908-1919 (in Chinese with English abstract).
[3] 陈琛, 张家星, 李万元, 唐东, 罗刚, 王祥菊, 莫兰婧, 吕旻珈, 周娟, 梁国华, 黄建晔, 王余龙, 姚友礼, 董桂春. 氮高效水稻主要源库性状的基本特点及其调控. 中国水稻科学, 2017,31:185-194.
Chen C, Zhang J X, Li W Y, Tang D, Luo G, Wang X J, Mo L J, Lyu M J, Zhou J, Liang G H, Huang J Y, Wang Y L, Yao Y L, Dong G C. Fundamental features of source-sink characters and their regulation in high nitrogen efficiency rice lines. Chin J Rice Sci, 2017,31:185-194 (in Chinese with English abstract).
[4] 蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望. 生命科学, 2018,30:1060-1071.
Jiang Z M, Wang W, Chu C C. Towards understanding of nitrogen use efficiency in plants. Chin Bull Life Sci, 2018,30:1060-1071 (in Chinese with English abstract).
[5] Lin C M, Koh S, Stacey G, Yu S M, Lin T Y, Tsay Y F. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol, 2000,122:379-388.
pmid: 10677431
[6] Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014,46:652-656.
doi: 10.1038/ng.2958 pmid: 24777451
[7] Zhang Y J, Tan L B, Zhu Z F, Yuan L X, Xie D X, Sun C Q. TOND1 confers tolerance to nitrogen deficiency in rice. Plant J, 2015,81:367-376.
doi: 10.1111/tpj.12736 pmid: 25439309
[8] Fan X, Xie D, Chen J, Lu H, Xu Y, Ma C, Xu G. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Sci, 2014,227:1-11.
doi: 10.1016/j.plantsci.2014.05.013 pmid: 25219300
[9] Liu X, Huang D, Tao J, Miller A J, Fan X, Xu G. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytol, 2014,204:74-80.
doi: 10.1111/nph.12986
[10] Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015,47:834-838.
doi: 10.1038/ng.3337 pmid: 26053497
[11] Zhang J Y, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Ruben G O, Chu C C, Bai Y. NRT1.1B is associated with root macrobiotic composition and nitrogen use in field-grown rice. Nat Biotechnol, 2019,37:676-684.
doi: 10.1038/s41587-019-0104-4 pmid: 31036930
[12] Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller A J, Xu G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA, 2016,113:7118-7123.
doi: 10.1073/pnas.1525184113 pmid: 27274069
[13] Li S, TianY H, Wu K, YeY F, Yu J P, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018,560:595-600.
doi: 10.1038/s41586-018-0415-5 pmid: 30111841
[14] Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 2019,10:5207.
doi: 10.1038/s41467-019-13110-8 pmid: 31729387
[15] Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W L, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019,10:5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[16] Zhang W H, Sun P Y, He Q, Shu F, Wang J, Deng H F. Fine mapping of GS2, a dominant gene for big grain rice. Crop J, 2013,1:160-165.
doi: 10.1016/j.cj.2013.10.003
[17] Che R H, Tong H N, Shi B H. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2016,2:15195.
doi: 10.1038/nplants.2015.195 pmid: 27250747
[18] Duan P G, Ni S, Wang J M, Zhang B L. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2016,2:15203.
doi: 10.1038/nplants.2015.203 pmid: 27250749
[19] Hu J, Wang Y X, Fang Y X. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[20] Li S C, Gao F Y, Xie K L. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016,14:2134-2146.
doi: 10.1111/pbi.12569 pmid: 27107174
[21] Sun P Y, Zhang W H, Wang Y H, Deng H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58:836-847.
pmid: 26936408
[22] Chen X L, Jiang L R, Zheng J S, Chen F Y, Wang T S, Wang M L, TaoY, Wang H C, Hong Z L, Huang Y M, Huang R Y. A missense mutation in large grain size 1 increases grain size and enhances cold tolerance in rice. J Exp Bot, 2019,70:3851-3866.
doi: 10.1093/jxb/erz192 pmid: 31020332
[23] 胡海涛, 郭龙彪. 我国水稻分子生物学发展现状及展望. 中国稻米, 2019,25(5):12-18.
Hu H T, Guo L B. Present situation, progress and prospects of development of rice molecular biology in China. Chin Rice, 2019,25(5):12-18 (in Chinese with English abstract).
[24] 黎裕, 王建康, 邱丽娟, 马有志, 李新海, 万建民. 中国作物分子育种现状与发展前景. 作物学报, 2010,36:1425-1430.
doi: 10.3724/SP.J.1006.2010.01425
Li Y, Wang J K, Qiu L J, Ma Y Z, Li X H, Wan J M. Crop molecular breeding in China: current status and perspectives. Acta Agron Sin, 2010,36:1425-1430 (in Chinese with English abstract).
[25] 程保山, 洪德林, 万志兵, 郭媛. 与粳稻BT型细胞质育性恢复基因连锁的实用SSR标记的筛选. 南京农业大学学报, 2011,34(1):1-7.
Cheng B S, Hong D L, Wan Z B, Guo Y. Screening of applicable SSR marker linked to restorer gene for BT-type cytoplasm in japonica rice. J Nanjing Agric Univ, 2011,34(1):1-7 (in Chinese with English abstract).
[26] 梁毅, 杨婷婷, 谭令辞, 文婷, 吴俊, 江南, 李智强, 戴良英, 王国梁, 刘雄伦. 水稻广谱抗瘟基因紧密连锁分子标记开发及其育种应用. 杂交水稻, 2013,28(4):63-68.
Liang Y, Yang T T, Tan L G, Wen T, Wu J, Jiang N, Li Z Q, Dai L Y, Wang G L, Liu X L. Development of the molecular marker tightly-linked with the broad-spectrum blast resistance gene Pigm and its breeding practice in rice. Hybrid Rice, 2013,28(4):63-68 (in Chinese with English abstract).
[27] Andersen J R, Liibberstedt T. Functional markers in plants. Trends Plant Sci, 2003,8:554-560.
doi: 10.1016/j.tplants.2003.09.010 pmid: 14607101
[28] 姚姝, 陈涛, 张亚东, 朱镇, 赵庆勇, 周丽慧, 赵凌, 赵春芳, 王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因. 作物学报, 2017,43:1622-1631.
doi: 10.3724/SP.J.1006.2017.01622
Yao S, Chen T, Zhang Y D, Zhu Z, Zhao Q Y, Zhou L H, Zhao L, Zhao C F, Wang C L. Pyramiding Pi-ta, Pi-b, and Wx-mq genes by marker-assisted selection in rice(Oryza sativa L.). Acta Agron Sin, 2017,43:1622-1631 (in Chinese with English abstract).
[29] 马建, 马小定, 赵志超, 王帅, 王久林, 王洁, 程治军, 雷财林. 水稻抗稻瘟病基因Pi35功能性分子标记的开发及其应用. 作物学报, 2015,41:1779-1790.
doi: 10.3724/SP.J.1006.2015.01779
Ma J, Ma X D, Zhao Z C, Wang S, Wang J L, Wang J, Cheng Z J, Lei C L. Development and application of a functional marker of the blast resistance gene Pi35 in rice. Acta Agron Sin, 2015,41:1779-1790 (in Chinese with English abstract).
[30] 胡雪娇, 程灿, 涂荣剑. 水稻耐高温TT1基因的功能标记的开发与应用. 分子植物育种, 2019,17:7414-7419.
Hu X J, Cheng C, Tu R J. Development and application of functional marker for thermo tolerance gene TT1 in rice. Mol Plant Breed, 2019,17:7414-7419 (in Chinese with English abstract).
[31] 陈涛, 张善磊, 赵凌, 张亚东, 朱镇, 赵庆勇, 周丽慧, 姚姝, 赵春芳, 梁文化, 王才林. ALS抑制剂类除草剂抗性水稻功能标记的开发与验证, 中国水稻科学, 2018,32:137-145.
Chen T, Zhang S L, Zhao L, Zhang Y D, Zhu Z, Zhao Q Y, Zhou L H, Yao S, Zhao C F, Liang W H, Wang C L. Development and verification of a functional marker associated with resistance to ALS inhibitor herbicide. Chin J Rice Sci, 2018,32:137-145 (in Chinese with English abstract).
[32] Chen S H, Yang Y, Shi W W. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 2008,20:1850-1861.
doi: 10.1105/tpc.108.058917 pmid: 18599581
[33] Li W T, Zhu Z W, Chern M S. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017,170:114-126.
doi: 10.1016/j.cell.2017.06.008 pmid: 28666113
[34] Fan C C, Yu S B, Wang C G. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet, 2009,118:465-472.
doi: 10.1007/s00122-008-0913-1 pmid: 19020856
[35] Pan G, Zhang X Y, Liu K D. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol Biol, 2006,61:933-943.
doi: 10.1007/s11103-006-0058-z
[36] Hu B, Wang W, Ou S J. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015,47:834-838.
pmid: 26053497
[37] Ma Y, Dai X Y, Xu YY. COLD1 Confers chilling tolerance in rice. Cell, 2015,160:1209-1221.
doi: 10.1016/j.cell.2015.01.046 pmid: 25728666
[38] 王军, 赵婕宇, 许扬, 范方军, 朱金燕, 李文奇, 王芳权, 费云燕, 仲维功, 杨杰. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用. 作物学报, 2018,44:1612-1620.
doi: 10.3724/SP.J.1006.2018.01612
Wang J, Zhao J Y, Xu Y, Fan F J, Zhu J Y, Li W Q, Wang F Q, Fei Y Y, Zhong W G, Yang J. Development and application of functional markers for rice blast resistance gene Bsr-d1 in rice. Acta Agron Sin, 2018,44:1612-1620 (in Chinese with English abstract).
[39] Ye S, Dhillon S, Ke X, Collins A R, Day I N. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res, 2001,29:E88.
doi: 10.1093/nar/29.17.e88 pmid: 11522844
[40] 陈涛, 骆名瑞, 张亚东, 朱镇, 赵凌, 赵庆勇, 周丽慧, 姚姝, 于新, 王才林. 利用四引物扩增受阻突变体系PCR技术检测水稻低直链淀粉含量基因Wx-mq. 中国水稻科学, 2013,27:529-534.
doi: 10.3969/j.issn.10017216.2013.05.010
Chen T, Luo M R, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Zhou L H, Yao S, Yu X, Wang C L. Detection of Wx-mq gene for low-amylose content by tetra-primer amplification refractory mutation system PCR in rice. Chin J Rice Sci, 2013,27:529-534 (in Chinese with English abstract).
[41] Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crops Res, 2003,83:251-260.
doi: 10.1016/S0378-4290(03)00067-4
[42] Wang F M, Matsuoka M. Improved nutrient use gives cereal crops a boost. Nature, 2018,560:563-566.
doi: 10.1038/d41586-018-05928-x pmid: 30143754
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!