Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1913-1926.doi: 10.3724/SP.J.1006.2021.04235
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
FAN Kai(), PAN Xin-Feng, MAO Zhi-Jun, YE Fang-Ting, LI Zhao-Wei, LIN Wei-Wei, LIN Wen-Xiong*()
[1] |
Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5:199-206.
pmid: 10785665 |
[2] |
Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci, 2004, 9:236-243.
pmid: 15130549 |
[3] |
Pinheiro G L, Marques C S, Costa M D, Reis P A, Alves M S, Carvalho C M, Fietto L G, Fontes E P. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene, 2009, 444:10-23.
doi: 10.1016/j.gene.2009.05.012 |
[4] |
Jacob P, Hirt H, Bendahmane A. The heat-shock protein/ chaperone network and multiple stress resistance. Plant Biotechnol J, 2017, 15:405-414.
doi: 10.1111/pbi.2017.15.issue-4 |
[5] | 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展. 生物技术通报, 2016, 32(2):7-13 |
Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. Research progress on plant heat shock protein. Biotechnol Bull, 2016, 32(2):7-13 (in Chinese with English abstract). | |
[6] |
Waters E R, Vierling E. Plant small heat shock proteins-evolutionary and functional diversity. New Phytol, 2020, 227:24-37.
doi: 10.1111/nph.v227.1 |
[7] |
Bentley N J, Fitch I T, Tuite M F. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast, 2010, 8:95-106.
doi: 10.1002/(ISSN)1097-0061 |
[8] |
Elicker K S, Hutson L D. Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene, 2007, 403:60-69.
doi: 10.1016/j.gene.2007.08.003 |
[9] |
Scharf K, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001, 6:225-237.
doi: 10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2 |
[10] |
Sarkar N K, Kim Y, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 2009, 10:393.
doi: 10.1186/1471-2164-10-393 |
[11] | 张宁, 姜晶, 史洁玮. 番茄HSP20基因家族的全基因组鉴定、系统进化及表达分析. 沈阳农业大学学报, 2017, 48(2):137-144. |
Zhang N, Jiang J, Shi J W. Genome-wide identification, phyletic evolution and expression analysis of the HSP20 gene family in tomato. J Shenyang Agric Univ, 2017, 48(2):137-144 (in Chinese with English abstract). | |
[12] |
Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics, 2018, 19:61.
doi: 10.1186/s12864-018-4443-1 |
[13] |
Ma W, Zhao T, Li J, Liu B, Fang L, Hu Y, Zhang T. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum. Sci Rep, 2016, 6:1-13.
doi: 10.1038/s41598-016-0001-8 |
[14] | 何福林, 张斌. 银杏(Ginkgo biloba) GbHsp20基因家族的鉴定及系统进化分析. 分子植物育种, 2019, 17:7368-7376. |
He F L, Zhang B. Identification and phylogenetic analysis of GbHsp20 gene family in Ginkgo biloba L. Mol Plant Breed, 2019, 17:7368-7376 (in Chinese with English abstract). | |
[15] |
Li J, Zhang J, Jia H, Yue Z, Lu M, Xin X, Hu J. Genome-wide characterization of the sHsp gene family in Salix suchowensis reveals its functions under different abiotic stresses. Int J Mol Sci, 2018, 19:3246.
doi: 10.3390/ijms19103246 |
[16] |
Jung Y J, Nou I S, Kang K K. Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breed Biotechnol, 2014, 2:370-379.
doi: 10.9787/PBB.2014.2.4.370 |
[17] |
Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Mol Biol Rep, 2016, 43:815-826.
doi: 10.1007/s11033-016-4008-9 |
[18] |
Sun W, Bernard C, Cotte B V D, Montagu M V, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J, 2001, 27:407-415.
pmid: 11576425 |
[19] |
Udall J A, Long E, Ramaraj T, Conover J L, Yuan D, Grover C E, Gong L, Arick II M A, Masonbrink R E, Peterson D G, Wendel J F. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front Plant Sci, 2019, 10:1541.
doi: 10.3389/fpls.2019.01541 |
[20] | Elhady S. Isolation and Structural Elucidation of Natural Products from Pentas longiflora Oliver and Gossypioides kirkii (Mast.) Hutch J B. PhD Dissertation of Faculty of Agricultural and Applied Biological Sciences of Ghent University, Ghent, Belgium, 1999. |
[21] | Wendel J F, Cronn R C. Polyploidy and the evolutionary history of cotton. Adv Agron, 2003, 78:139-186. |
[22] | Fan K, Mao Z, Zheng J, Chen Y, Li Z, Lin W, Zhang Y, Huang J, Lin W. Molecular evolution and expansion of the KUP family in the allopolyploid cotton species Gossypium hirsutum and Gossypium barbadense. Front Plant Sci, 2020, 11:1501. |
[23] | Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 8:1194-1202. |
[24] |
Muthusamy S K, Dalal M, Chinnusamy V, Bansal K C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol, 2017, 211:100.
doi: 10.1016/j.jplph.2017.01.004 |
[25] |
Fan K, Wang M, Miao Y, Ni M, Bibi N, Yuan S, Li F, Wang X. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One, 2014, 9:e111837.
doi: 10.1371/journal.pone.0111837 |
[26] |
Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan M M, Wang X. Genomic identification and comparative expansion analysis of the non-specific lipid transfer protein gene family in Gossypium. Sci Rep, 2016, 6:38948.
doi: 10.1038/srep38948 |
[27] |
Shan Z, Luo X, Wu M, Wei L, Zhu Y. Genome-wide identification and expression of GRAS gene family members in cassava. BMC Plant Biol, 2020, 20:46.
doi: 10.1186/s12870-020-2242-8 |
[28] |
Fan K, Li F, Chen J, Li Z, Lin W, Cai S, Liu J, Lin W. Asymmetric evolution and expansion of the NAC transcription factor in polyploidized cotton. Front Plant Sci, 2018, 9:47.
doi: 10.3389/fpls.2018.00047 |
[29] |
Sun H R, Hao P B, Ma Q, Zhang M, Qin Y, Wei H J, Su J J, Wang H T, Gu L J, Wang N H, Liu G Y, Yu S X. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton(Gossypium hirsutum L.). BMC Genomics, 2018, 19:661.
doi: 10.1186/s12864-018-5047-5 |
[30] |
Wang Y, Wang X, Tang H, Tan X, Ficklin S P, Feltus F A, Paterson A H. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One, 2011, 6:e28150.
doi: 10.1371/journal.pone.0028150 |
[31] |
Soltis D E, Visger C J, Marchant D B, Soltis P S. Polyploidy: pitfalls and paths to a paradigm. Am J Bot, 2016, 103:1146-1166.
doi: 10.3732/ajb.1500501 |
[32] |
Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet, 2016, 17:379.
doi: 10.1038/nrg.2016.39 pmid: 27087500 |
[33] |
Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C S, Li Q, Yuan Y L, Lu C R. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44:1098-1103.
doi: 10.1038/ng.2371 |
[34] |
Ray S, Agarwal P, Arora R, Kapoor S, Akhilesh K T. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics, 2007, 278:493-505.
doi: 10.1007/s00438-007-0267-4 |
[35] |
Haferkamp I, Schmitz-Esser S. The plant mitochondrial carrier family: functional and evolutionary aspects. Front Plant Sci, 2012, 3:2.
doi: 10.3389/fpls.2012.00002 pmid: 22639632 |
[36] | 朱宇斌, 孔莹莹, 王君晖. 植物生长素响应基因SAUR的研究进展. 生命科学, 2014, 26:407-413. |
Zhu Y B, Kong Y Y, Wang J H. Research advances in auxin-responsive SAUR genes. Chin Bull Life Sci, 2014, 26:407-413 (in Chinese with English abstract). | |
[37] |
Zhao R, Sun H, Zhao N, Jing X, Shen X, Chen S. The Arabidopsis Ca2+-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene, 2015, 563:203-214.
doi: 10.1016/j.gene.2015.03.024 pmid: 25791495 |
[38] |
Valente C, Pasqualim P, Jacomasso T, Maurer J B B, Souza E M D, Martinez G R, Rocha M E M, Carnieri E G S, Cadena S M S C. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. Plant Sci, 2012, 197:84-91.
doi: 10.1016/j.plantsci.2012.09.007 |
[39] | Guo Y, Jiang Q, Hu Z, Sun X, Zhang H. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J, 2018, 2:181-190. |
[40] | 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, (4):16-20. |
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotechnol Bull, 2011, (4):16-20 (in Chinese with English abstract). | |
[41] |
Sewelam N, Kazan K, Meike H, Maurino V G, Schenk P M. The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int J Mol Sci, 2019, 20:3201.
doi: 10.3390/ijms20133201 |
[42] |
Zou J, Liu C, Liu A, Zou D, Chen X. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol, 2012, 169:628-635.
doi: 10.1016/j.jplph.2011.12.014 |
[1] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[2] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[3] | FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539. |
[4] | SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296. |
[5] | ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113. |
[6] | TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683. |
[7] | YAN Cai-Xia, WANG Juan, ZHAO Xiao-Bo, SONG Xiu-Xia, JIANG Chang-Song, SUN Quan-Xi, YUAN Cui-Ling, ZHANG Hao, SHAN Shi-Hua. Identification and screening of saline-alkali tolerant peanut cultivars during whole growth stage [J]. Acta Agronomica Sinica, 2021, 47(3): 556-565. |
[8] | YANG Yang, LI Huai-Lin, HU Li-Min, FAN Chu-Chuan, ZHOU Yong-Ming. Genetic analysis and molecular characterization of multilocular trait in the srb mutant of Brassica rapa L. [J]. Acta Agronomica Sinica, 2021, 47(3): 385-393. |
[9] | ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098. |
[10] | GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93. |
[11] | XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350. |
[12] | DUAN Can-Xing,DONG Huai-Yu,LI Xiao,LI Hong,LI Chun-Hui,SUN Su-Li,ZHU Zhen-Dong,WANG Xiao-Ming. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition [J]. Acta Agronomica Sinica, 2020, 46(8): 1135-1145. |
[13] | TIAN Hong-Li, YANG Yang, WANG Lu, WANG Rui, YI Hong-Mei, XU Li-Wen, ZHANG Yun-Long, GE Jian-Rong, WANG Feng-Ge, ZHAO Jiu-Ran. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties [J]. Acta Agronomica Sinica, 2020, 46(7): 1006-1015. |
[14] | WANG Dan-Dan, LIU Hong-Juan, WANG Hong-Xia, ZHANG Peng, SHI Chun-Yu. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3 [J]. Acta Agronomica Sinica, 2020, 46(7): 1120-1127. |
[15] | HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818. |
|