Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1913-1926.doi: 10.3724/SP.J.1006.2021.04235

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and analysis of sHSP gene family in Gossypioides kirkii

FAN Kai(), PAN Xin-Feng, MAO Zhi-Jun, YE Fang-Ting, LI Zhao-Wei, LIN Wei-Wei, LIN Wen-Xiong*()   

  1. Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fuzhou, China
  • Received:2020-10-29 Accepted:2021-03-19 Online:2021-10-12 Published:2021-03-31
  • Contact: LIN Wen-Xiong E-mail:fankai@fafu.edu.cn;lwx@fafu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31701470);China Postdoctoral Science Foundation(2017M610388);China Postdoctoral Science Foundation(2018T110637);Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University(CXZX2020007A);Outstanding Youth Scientific Fund of Fujian Agriculture and Forestry University(xjq201917)

Abstract:

Small heat shock protein (sHSP) has the lowest molecular weight in heat shock protein and sHSP has the highly conserved α-crystallin domain. The sHSP family is very important in response to various stresses, but the identification and analysis of sHSP gene family in Gossypioides kirkii have not been reported. In this study, we identified 39 GksHSPs with 10 subfamilies in Gossypioides kirkii. There were seven gene duplication events in GksHSP family and all of duplicated gene pairs were involved in segmental duplication events. The cotton-specific whole genome duplication event primarily resulted in the GksHSP expansion. The GksHSP expansion was also related to the protein kinase, mitochondrial carrier protein, and auxin responsive protein. Besides, GksHSP members might respond to various stresses by ABA/MeJA-mediated pathways, and GksHSP26 and its corresponding orthologous genes in Gossypium hirsutum were very important in stress responses. These results could provide the theoretical basis of the breeding of stress tolerance in Gossypioides kirkii and cotton.

Key words: Gossypioides kirkii, sHSP, identification, expansion, function

Fig. 1

Phylogenetic analysis of sHSP members in Arabidopsis thaliana and Gossypioides kirkii"

Table 1

Identification and structural analysis of GksHSP in this study"

名称
Name
位点名称
Locus name
亚家族
Subfamily
蛋白质长度
Protein length (aa)
分子量
Molecular weight (kD)
理论pI
Theoretical pI
α-螺旋
α-helix
延伸链
Extended strand
β-折叠
β-turn
无规则卷曲
Random coil
GksHSP01 Kirkii_Version3_Juiced.00g028900 CP 144 16.32340 4.95 23 30 6 85
GksHSP02 Kirkii_Version3_Juiced.00g047410 CI 159 18.32872 5.98 28 29 11 91
GksHSP03 Kirkii_Version3_Juiced.00g056780 ER 187 21.44579 6.77 64 31 8 84
GksHSP04 Kirkii_Version3_Juiced.00g059950 CI 153 17.69095 5.35 34 28 7 84
GksHSP05 Kirkii_Version3_Juiced.00g085690 CII 159 18.01872 6.64 52 34 8 65
GksHSP06 Kirkii_Version3_Juiced.00g085700 CII 156 17.66154 6.62 53 38 11 54
GksHSP07 Kirkii_Version3_Juiced.00g091700 CI 156 17.91837 5.79 38 30 10 78
GksHSP08 Kirkii_Version3_Juiced.00g091710 CI 156 17.80026 6.18 36 29 9 82
GksHSP09 Kirkii_Version3_Juiced.00g092160 CI 133 14.79902 9.00 40 22 5 66
GksHSP10 Kirkii_Version3_Juiced.00g096000 MTII 246 27.95450 7.80 82 46 13 105
GksHSP11 Kirkii_Version3_Juiced.00g097580 CIII 102 11.37751 4.37 35 16 5 46
GksHSP12 Kirkii_Version3_Juiced.00g101120 CIV 139 15.76492 5.34 28 29 10 72
GksHSP13 Kirkii_Version3_Juiced.00g120690 CI 159 18.25460 6.18 20 34 10 95
GksHSP14 Kirkii_Version3_Juiced.00g120700 CI 159 18.19460 6.18 28 31 10 90
GksHSP15 Kirkii_Version3_Juiced.00g120710 CI 159 18.27965 6.64 29 32 8 90
GksHSP16 Kirkii_Version3_Juiced.00g134580 CIV 139 15.85984 4.61 30 34 6 69
GksHSP17 Kirkii_Version3_Juiced.00g136170 CII 159 18.18400 6.19 49 31 7 72
GksHSP18 Kirkii_Version3_Juiced.00g136180 CII 153 17.05883 8.59 53 40 9 51
GksHSP19 Kirkii_Version3_Juiced.00g184450 CI 156 17.82725 5.77 32 31 10 83
GksHSP20 Kirkii_Version3_Juiced.00g184460 CI 160 18.36475 6.18 39 33 8 80
GksHSP21 Kirkii_Version3_Juiced.00g184750 CI 135 14.96507 5.91 38 33 4 60
GksHSP22 Kirkii_Version3_Juiced.00g188220 CI 143 16.28479 9.22 25 28 7 83
GksHSP23 Kirkii_Version3_Juiced.00g193540 PX 165 18.81639 5.98 18 40 8 99
GksHSP24 Kirkii_Version3_Juiced.00g194110 CII 158 17.75257 5.97 51 34 11 62
GksHSP25 Kirkii_Version3_Juiced.00g209640 CP 232 25.77139 6.84 39 43 8 142
GksHSP26 Kirkii_Version3_Juiced.00g215570 CI 159 18.38593 5.83 30 30 10 89
GksHSP27 Kirkii_Version3_Juiced.00g230720 SINGLE 140 16.28668 5.39 28 26 10 76
GksHSP28 Kirkii_Version3_Juiced.00g244800 CI 163 18.52218 8.83 33 36 10 84
GksHSP29 Kirkii_Version3_Juiced.00g246020 CI 156 17.87539 6.76 27 39 10 80
GksHSP30 Kirkii_Version3_Juiced.00g256930 CI 144 16.53776 5.58 26 34 8 76
GksHSP31 Kirkii_Version3_Juiced.00g267060 CV 166 19.59569 6.33 57 39 17 53
GksHSP32 Kirkii_Version3_Juiced.00g273810 CI 93 10.50390 4.61 11 32 9 41
GksHSP33 Kirkii_Version3_Juiced.00g301400 PX 141 15.98226 6.92 24 36 10 71
GksHSP34 Kirkii_Version3_Juiced.00g331020 CP 230 25.96835 5.86 40 38 9 143
GksHSP35 Kirkii_Version3_Juiced.00g336540 MTI/CP 181 20.93121 6.23 61 35 10 75
GksHSP36 Kirkii_Version3_Juiced.00g336590 MTI/CP 327 36.83181 5.49 103 48 22 154
GksHSP37 Kirkii_Version3_Juiced.00g343620 CI 149 17.03446 7.83 30 35 9 75
GksHSP38 Kirkii_Version3_Juiced.00g375140 ER 184 20.66178 5.76 57 33 8 86
GksHSP39 Kirkii_Version3_Juiced.00g377690 CV 196 22.48230 5.45 44 40 17 95

Fig. 2

Phylogenetic relationship (left), conserved motif (middle), and gene structure (right) of GkHSPs"

Table 2

Motif information of GksHSPs through the MEME program"

基序ID
Motif ID
基序序列
Motif sequence
基序长度
Motif length (aa)
MEME-1 RIDWKETPEAHVFKADVPGLKKEEVKVEVEDDRVLQISGERNVEKEDKNDT 51
MEME-2 NAKMDQIKASMEBGVLTVTVP 21
MEME-3 ERSSGKFMRRFRLPE 15
MEME-4 MAMIPSFFGNRRSSI 15
MEME-5 FDPFSLDVWDPFKDF 15
MEME-6 HVFKADLPGLKKEEVKVEVED 21
MEME-7 KLEVKKPDVKAIEIS 15
MEME-8 SLSTRSPETSAFVNA 15
MEME-9 MLDIPDETEKSPNAPSRAYVRDAKAMAAT 29
MEME-10 MEFPFPSDQHSPLYHYLLPSPPLFSNQLLPENHLNWTQTP 40
MEME-11 QQREGKKKDWRSCNWWEYGYVRRLELPZDADWRKIEAFLSNDVVLEIRIPRN 52
MEME-12 MDFRIMGFDSPLLHT 15
MEME-13 WTNRSYSSYBTSLQLPD 17
MEME-14 VLVIKGERKEE 11
MEME-15 QERAVEKRPKRLAMDVSPFGLLDPLSPMRSMRQMLDTMDRIFEDAMIFPGSNRRQGG 57
MEME-16 DWKETPEA 8
MEME-17 PFSVSFPSKNPCNSRLSVVRAZAAGDNNKDTSVDVHVNKDN 41
MEME-18 GSFYIDPADVPDRVEVLARAA 21
MEME-19 NIQIHVEKGKIMEIFGQ 17
MEME-20 RAPWDIKDGEH 11

Fig. 3

Chromosomal locations of GkHSPs on Gossypioides kirkii 12 chromosomes"

Table 3

Ka and Ks analysis for the duplicated sHSPs in Gossypioides kirkii"

复制基因1
Duplicated gene 1
复制基因2
Duplicated gene 2
亚家族
Subfamily
非同义
替换率
Ka
同义替换率
Ks
非同义替换率/同义替换率
Ka/Ks
纯化选择
Purifying selection
复制类型
Duplicated type
GksHSP05 GksHSP17 CII 0.063959 0.809673 0.078994 是Yes 片段复制事件
Segmental
GksHSP06 GksHSP18 CII 0.090699 0.742610 0.122136 是Yes 片段复制事件Segmental
GksHSP07 GksHSP20 CI 0.045458 0.629437 0.072220 是Yes 片段复制事件Segmental
GksHSP09 GksHSP21 CI 0.159061 0.715073 0.222441 是Yes 片段复制事件Segmental
GksHSP06 GksHSP24 CII 0.113536 1.039721 0.109199 是Yes 片段复制事件Segmental
GksHSP18 GksHSP24 CII 0.103983 0.730373 0.142370 是Yes 片段复制事件Segmental
GksHSP25 GksHSP34 CP 0.125830 0.606857 0.207347 是Yes 片段复制事件Segmental

Fig. 4

Gene duplication analysis of GkHSP members A: duplicated relationship of GkHSP members, the duplicated blocks were shown by the colors. B: the distribution of the duplication events in different subfamilies. C: the distribution of synonymous substation rate about duplicated GksHSPs."

Fig. 5

Duplicated block analysis of the GkHSP family A-E: microsyntenic analysis of duplicated block 1 (A), duplicated block 2 (B), duplicated block 3 (C), duplicated block 4 (D), and duplicated block 5 (E). F: the distribution of gene annotation about the five duplicated blocks in the GkHSP family. G-I: Ka (G), Ks (H), and Ka/Ks (I) analysis of the five duplicated blocks in the GkHSP family. * represents significant difference at P < 0.05."

Fig. 6

Stress-related regulatory elements in the promoter regions of GksHSPs The GksHSP subfamilies were denoted by using different colors and letters. Each colored box represents a cis-regulatory element."

Fig. 7

Identification and expression levels of the orthologous genes of GksHSP26 in Gossypium hirsutum A: alignment analysis of GksHSP26 and its corresponding orthologous genes in Gossypium hirsutum (Gh_D08G181200 and Gh_A08G183800). B-C: heat map representation of Gh_D08G181200 (B) and Gh_A08G183800 (C) expression levels under heat, salt, and drought stresses."

[1] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5:199-206.
pmid: 10785665
[2] Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci, 2004, 9:236-243.
pmid: 15130549
[3] Pinheiro G L, Marques C S, Costa M D, Reis P A, Alves M S, Carvalho C M, Fietto L G, Fontes E P. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene, 2009, 444:10-23.
doi: 10.1016/j.gene.2009.05.012
[4] Jacob P, Hirt H, Bendahmane A. The heat-shock protein/ chaperone network and multiple stress resistance. Plant Biotechnol J, 2017, 15:405-414.
doi: 10.1111/pbi.2017.15.issue-4
[5] 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展. 生物技术通报, 2016, 32(2):7-13
Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. Research progress on plant heat shock protein. Biotechnol Bull, 2016, 32(2):7-13 (in Chinese with English abstract).
[6] Waters E R, Vierling E. Plant small heat shock proteins-evolutionary and functional diversity. New Phytol, 2020, 227:24-37.
doi: 10.1111/nph.v227.1
[7] Bentley N J, Fitch I T, Tuite M F. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast, 2010, 8:95-106.
doi: 10.1002/(ISSN)1097-0061
[8] Elicker K S, Hutson L D. Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene, 2007, 403:60-69.
doi: 10.1016/j.gene.2007.08.003
[9] Scharf K, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001, 6:225-237.
doi: 10.1379/1466-1268(2001)006&lt;0225:TEFOAT&gt;2.0.CO;2
[10] Sarkar N K, Kim Y, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 2009, 10:393.
doi: 10.1186/1471-2164-10-393
[11] 张宁, 姜晶, 史洁玮. 番茄HSP20基因家族的全基因组鉴定、系统进化及表达分析. 沈阳农业大学学报, 2017, 48(2):137-144.
Zhang N, Jiang J, Shi J W. Genome-wide identification, phyletic evolution and expression analysis of the HSP20 gene family in tomato. J Shenyang Agric Univ, 2017, 48(2):137-144 (in Chinese with English abstract).
[12] Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics, 2018, 19:61.
doi: 10.1186/s12864-018-4443-1
[13] Ma W, Zhao T, Li J, Liu B, Fang L, Hu Y, Zhang T. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum. Sci Rep, 2016, 6:1-13.
doi: 10.1038/s41598-016-0001-8
[14] 何福林, 张斌. 银杏(Ginkgo biloba) GbHsp20基因家族的鉴定及系统进化分析. 分子植物育种, 2019, 17:7368-7376.
He F L, Zhang B. Identification and phylogenetic analysis of GbHsp20 gene family in Ginkgo biloba L. Mol Plant Breed, 2019, 17:7368-7376 (in Chinese with English abstract).
[15] Li J, Zhang J, Jia H, Yue Z, Lu M, Xin X, Hu J. Genome-wide characterization of the sHsp gene family in Salix suchowensis reveals its functions under different abiotic stresses. Int J Mol Sci, 2018, 19:3246.
doi: 10.3390/ijms19103246
[16] Jung Y J, Nou I S, Kang K K. Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breed Biotechnol, 2014, 2:370-379.
doi: 10.9787/PBB.2014.2.4.370
[17] Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Mol Biol Rep, 2016, 43:815-826.
doi: 10.1007/s11033-016-4008-9
[18] Sun W, Bernard C, Cotte B V D, Montagu M V, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J, 2001, 27:407-415.
pmid: 11576425
[19] Udall J A, Long E, Ramaraj T, Conover J L, Yuan D, Grover C E, Gong L, Arick II M A, Masonbrink R E, Peterson D G, Wendel J F. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front Plant Sci, 2019, 10:1541.
doi: 10.3389/fpls.2019.01541
[20] Elhady S. Isolation and Structural Elucidation of Natural Products from Pentas longiflora Oliver and Gossypioides kirkii (Mast.) Hutch J B. PhD Dissertation of Faculty of Agricultural and Applied Biological Sciences of Ghent University, Ghent, Belgium, 1999.
[21] Wendel J F, Cronn R C. Polyploidy and the evolutionary history of cotton. Adv Agron, 2003, 78:139-186.
[22] Fan K, Mao Z, Zheng J, Chen Y, Li Z, Lin W, Zhang Y, Huang J, Lin W. Molecular evolution and expansion of the KUP family in the allopolyploid cotton species Gossypium hirsutum and Gossypium barbadense. Front Plant Sci, 2020, 11:1501.
[23] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 8:1194-1202.
[24] Muthusamy S K, Dalal M, Chinnusamy V, Bansal K C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol, 2017, 211:100.
doi: 10.1016/j.jplph.2017.01.004
[25] Fan K, Wang M, Miao Y, Ni M, Bibi N, Yuan S, Li F, Wang X. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One, 2014, 9:e111837.
doi: 10.1371/journal.pone.0111837
[26] Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan M M, Wang X. Genomic identification and comparative expansion analysis of the non-specific lipid transfer protein gene family in Gossypium. Sci Rep, 2016, 6:38948.
doi: 10.1038/srep38948
[27] Shan Z, Luo X, Wu M, Wei L, Zhu Y. Genome-wide identification and expression of GRAS gene family members in cassava. BMC Plant Biol, 2020, 20:46.
doi: 10.1186/s12870-020-2242-8
[28] Fan K, Li F, Chen J, Li Z, Lin W, Cai S, Liu J, Lin W. Asymmetric evolution and expansion of the NAC transcription factor in polyploidized cotton. Front Plant Sci, 2018, 9:47.
doi: 10.3389/fpls.2018.00047
[29] Sun H R, Hao P B, Ma Q, Zhang M, Qin Y, Wei H J, Su J J, Wang H T, Gu L J, Wang N H, Liu G Y, Yu S X. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton(Gossypium hirsutum L.). BMC Genomics, 2018, 19:661.
doi: 10.1186/s12864-018-5047-5
[30] Wang Y, Wang X, Tang H, Tan X, Ficklin S P, Feltus F A, Paterson A H. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One, 2011, 6:e28150.
doi: 10.1371/journal.pone.0028150
[31] Soltis D E, Visger C J, Marchant D B, Soltis P S. Polyploidy: pitfalls and paths to a paradigm. Am J Bot, 2016, 103:1146-1166.
doi: 10.3732/ajb.1500501
[32] Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet, 2016, 17:379.
doi: 10.1038/nrg.2016.39 pmid: 27087500
[33] Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C S, Li Q, Yuan Y L, Lu C R. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44:1098-1103.
doi: 10.1038/ng.2371
[34] Ray S, Agarwal P, Arora R, Kapoor S, Akhilesh K T. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics, 2007, 278:493-505.
doi: 10.1007/s00438-007-0267-4
[35] Haferkamp I, Schmitz-Esser S. The plant mitochondrial carrier family: functional and evolutionary aspects. Front Plant Sci, 2012, 3:2.
doi: 10.3389/fpls.2012.00002 pmid: 22639632
[36] 朱宇斌, 孔莹莹, 王君晖. 植物生长素响应基因SAUR的研究进展. 生命科学, 2014, 26:407-413.
Zhu Y B, Kong Y Y, Wang J H. Research advances in auxin-responsive SAUR genes. Chin Bull Life Sci, 2014, 26:407-413 (in Chinese with English abstract).
[37] Zhao R, Sun H, Zhao N, Jing X, Shen X, Chen S. The Arabidopsis Ca2+-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene, 2015, 563:203-214.
doi: 10.1016/j.gene.2015.03.024 pmid: 25791495
[38] Valente C, Pasqualim P, Jacomasso T, Maurer J B B, Souza E M D, Martinez G R, Rocha M E M, Carnieri E G S, Cadena S M S C. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. Plant Sci, 2012, 197:84-91.
doi: 10.1016/j.plantsci.2012.09.007
[39] Guo Y, Jiang Q, Hu Z, Sun X, Zhang H. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J, 2018, 2:181-190.
[40] 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, (4):16-20.
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotechnol Bull, 2011, (4):16-20 (in Chinese with English abstract).
[41] Sewelam N, Kazan K, Meike H, Maurino V G, Schenk P M. The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int J Mol Sci, 2019, 20:3201.
doi: 10.3390/ijms20133201
[42] Zou J, Liu C, Liu A, Zou D, Chen X. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol, 2012, 169:628-635.
doi: 10.1016/j.jplph.2011.12.014
[1] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[2] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[3] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[4] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[5] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[6] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[7] YAN Cai-Xia, WANG Juan, ZHAO Xiao-Bo, SONG Xiu-Xia, JIANG Chang-Song, SUN Quan-Xi, YUAN Cui-Ling, ZHANG Hao, SHAN Shi-Hua. Identification and screening of saline-alkali tolerant peanut cultivars during whole growth stage [J]. Acta Agronomica Sinica, 2021, 47(3): 556-565.
[8] YANG Yang, LI Huai-Lin, HU Li-Min, FAN Chu-Chuan, ZHOU Yong-Ming. Genetic analysis and molecular characterization of multilocular trait in the srb mutant of Brassica rapa L. [J]. Acta Agronomica Sinica, 2021, 47(3): 385-393.
[9] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[10] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[11] XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350.
[12] DUAN Can-Xing,DONG Huai-Yu,LI Xiao,LI Hong,LI Chun-Hui,SUN Su-Li,ZHU Zhen-Dong,WANG Xiao-Ming. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition [J]. Acta Agronomica Sinica, 2020, 46(8): 1135-1145.
[13] TIAN Hong-Li, YANG Yang, WANG Lu, WANG Rui, YI Hong-Mei, XU Li-Wen, ZHANG Yun-Long, GE Jian-Rong, WANG Feng-Ge, ZHAO Jiu-Ran. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties [J]. Acta Agronomica Sinica, 2020, 46(7): 1006-1015.
[14] WANG Dan-Dan, LIU Hong-Juan, WANG Hong-Xia, ZHANG Peng, SHI Chun-Yu. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3 [J]. Acta Agronomica Sinica, 2020, 46(7): 1120-1127.
[15] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!