Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2663-2670.doi: 10.3724/SP.J.1006.2022.11084
• RESEARCH NOTES • Previous Articles Next Articles
LI Ying-Hao(), WANG Qi(), ZHAO Bao-Ping(), LIU Yan-Di, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui
[1] | 任长忠, 崔林, 何峰, 欧阳韶晖, 胡新中, 李再贵, 陕方. 我国燕麦荞麦产业技术体系建设与发展. 吉林农业大学学报, 2018, 40: 524-532. |
Ren C Z, Cui L, He F, Ou-Yang S H, Hu X Z, Li Z G, Shan F. Construction and development of China oat and buckwheat industrial technology system. J Jilin Agric Univ, 2018, 40: 524-532. (in Chinese with English abstract) | |
[2] | Wood P J. Cereal beta-glucans in diet and health. J Cereal Sci, 2007, 45: 230-238. |
[3] |
Nazare J-A, Normand S, Triantafyllou A O, Desage M, Laville M. Modulation of the postprandial phase by β-glucan in overweight subjects: effects on glucose and insulin kinetics. Mol Nutr Food Res, 2009, 53: 361-369.
doi: 10.1002/mnfr.200800023 |
[4] |
Marshall A, Cowan S, Edwards S, Griffiths I, Howarth C, Langdon T, White E. Crops that feed the world 9. Oats-a cereal crop for human and livestock feed with industrial applications. Food Secur, 2013, 5: 13-33.
doi: 10.1007/s12571-012-0232-x |
[5] |
Bodner G, Nakhforoosh A, Kaul H P. Management of crop water under drought: a review. Agron Sustain Dev, 2015, 35: 401-442.
doi: 10.1007/s13593-015-0283-4 |
[6] | Kadam N N, Xiao G, Melgar R J. Chapter 3: agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron, 2014, 127: 111-156. |
[7] | 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013. |
Ren C Z, Hu Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013 (in Chinese) | |
[8] | Liu D Q, Wan F, Guo R, Li F M, Cao H H, Sun G J. GIS-based modeling of potential yield distributions for different oat varieties in China. Math Comput Mod, 2011, 54: 869. |
[9] | 苏日娜. 中国燕麦产业发展研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2013. |
Su R N. Research on the Development of China’s Oat Industry. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2013. (in Chinese with English abstract) | |
[10] |
Humphreys D G, Mather D E. Heritability of β-glucan, groat- percentage, and crown rust resistance in two oat crosses. Euphytica, 1996, 91: 359-364.
doi: 10.1007/BF00033098 |
[11] |
Doehlert D C, McMullen M S, Hammond J J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci, 2001, 41: 1066-1072.
doi: 10.2135/cropsci2001.4141066x |
[12] |
Brunner B R, Freed R D. Oat grain β-glucan content as affected by nitrogen level, location and year. Crop Sci, 1994, 34: 473-476.
doi: 10.2135/cropsci1994.0011183X003400020031x |
[13] |
Peterson D M, Wesenberg D M, Burrup D E. β-glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Sci, 1995, 35: 965-970.
doi: 10.2135/cropsci1995.0011183X003500040005x |
[14] | Guler M. Nitrogen and irrigation effects on grain beta-glucan content of oats (Avena sativa L.). Austr J Crop Sci, 2011, 5: 239-244. |
[15] |
Chernyshova A A, White P J, Scott M P. Selection for nutritional function and agronomic performance in oat. Crop Sci, 2007, 47: 2330-2339.
doi: 10.2135/cropsci2006.12.0759 |
[16] | Cervantes-Martinez C T, Frey K J, White P J. Correlated responses to selection for greater β-glucan content in two oat populations. Crop Sci, 2002, 42: 730-738. |
[17] | 程亮, 张保林, 王杰, 史亚龙, 陈可可. 腐植酸肥料的研究进展. 中国土壤与肥料, 2011, (5): 1-6. |
Cheng L, Zhang B L, Wang J, Shi Y L, Chen K K. Research progress of humic acid fertilizers. Soils Fert China, 2011, (5): 1-6. (in Chinese with English abstract) | |
[18] |
Lotfi R, Kalaji H M, Valizadeh G R, Khalilvand Behrozyar E, Hemati A, Gharavi-Kochebagh P, Ghassemi A. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, 2018, 56: 962-970.
doi: 10.1007/s11099-017-0745-9 |
[19] | 刘伟, 刘景辉, 萨如拉. 腐植酸水溶肥料对燕麦叶片保护酶活性和渗透物质的影响. 灌溉排水学报, 2014, 33(1): 107-109. |
Liu W, Liu J H, Sarula. Effects of humic acid water-soluble fertilizers on protective enzyme activities and osmotic substances in oat leaves. J Irrig Drain, 2014, 33(1): 107-109. (in Chinese with English abstract) | |
[20] |
Robredo A, Pérez-lópez U, Lacuesta M, Mena-Petite A, Munoz- Rueda A. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant, 2010, 54: 285-292.
doi: 10.1007/s10535-010-0050-y |
[21] |
Liu B H, Liang J, Tang G M, Wang X F, Liu F C, Zhao D C. Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Sci Hortic, 2019, 250: 230-235.
doi: 10.1016/j.scienta.2019.02.056 |
[22] | Janani P, Kumar N, Jegadeeswari V. Dynamics of gas exchange and chlorophyll fluorescence parameters of cocoa genotypes in response to water deficit. J Pharm Phytochem, 2019, 8: 415-419. |
[23] |
Farooq M, Wahid A, Kobayashi N. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009, 29: 185-212.
doi: 10.1051/agro:2008021 |
[24] | 邓万和, 王强, 吕耀昌, 周素梅. 品种和环境效应对燕麦β-葡聚糖含量的影响. 中国粮油学报, 2005, 20(2): 30-32. |
Deng W H, Wang Q, Lyu Y C, Zhou S M. Effects of variety and environmental effects on the content of oat β-glucan. J Chin Cereals Oils Assoc, 2005, 20(2): 30-32. (in Chinese with English abstract) | |
[25] | 王冰, 朱莉, 李茂玮, 詹晓北. 适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究. 食品与发酵工业, 2021, 47(17): 27-33. |
Wang B, Zhu L, Li M W, Zhan X B. Adaptive domestication to produce low molecular weight β-glucan and its antioxidant activity. Food Ferment Ind Sin, 2021, 47(17): 27-33. (in Chinese with English abstract) | |
[26] | 张俊峰, 段娜, 刘兵兵, 刘龙龙, 赵文千. 灌浆期干旱胁迫对燕麦籽粒β-葡聚糖含量的影响. 山西农业科学, 2020, 48: 884-888. |
Zhang J F, Duan N, Liu B B, Liu L L, Zhao W Q. Effects of drought stress during grain filling period on β-glucan content in oat grains. Shanxi Agric Sci, 2020, 48: 884-888. (in Chinese with English abstract) | |
[27] |
Zhang X, Huang G, Bian X, Zhao Q G. Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizosphere. Plant Soil, 2013, 368: 407-417.
doi: 10.1007/s11104-012-1528-5 |
[28] | 韩文元. 水分与腐植酸对燕麦抗旱性、产量形成和品质的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2016. |
Han W Y. Effects of Moisture and Humic Acid on Drought Resistance, Yield Formation and Quality of Oats. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016. (in Chinese with English abstract) | |
[29] | 孙雯. 水分和腐植酸对燕麦光合、糖代谢及产量和β-葡聚糖形成的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2018. |
Sun W. Effects of Water and Humic Acid on Oat Photosynthesis, Sugar Metabolism, Yield and β-glucan Formation. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract) | |
[30] |
Dong C C, Yong I J, Nam J H, Chung G C, Ji H C, Su J K, Hong S Y. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Res, 2018, 215: 156-162.
doi: 10.1016/j.fcr.2017.10.008 |
[31] | Moghadam H R T, Khamene M K, Zahedi H. Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding at different growth stages. Maydica, 2014, 59: 125-129. |
[32] | Hartz T K, Bottoms T G. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Hortic Sci, 2010, 45: 906-910. |
[33] | Ahmad W, Shah Z, Khan F, Ali S, Malik W. Maize yield and soil properties as influenced by integrated use of organic, inorganic and bio-fertilizers in a low fertility soil. Soil Environ, 2013, 32: 121-129. |
[34] | 李英浩, 刘景辉, 朱珊珊. 干旱胁迫下腐植酸对燕麦叶片光合性能的调控效应. 麦类作物学报, 2019, 39: 1385-1391. |
Li Y H, Liu J H, Zhu S S. Regulation effects of humic acid on photosynthetic performance of oat leaves under drought stress. J Triticeae Crops, 2019, 39: 1385-1391. (in Chinese with English abstract) |
[1] | ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299. |
[2] | CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338. |
[3] | WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408. |
[4] | LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040. |
[5] | LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052. |
[6] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
[7] | ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760. |
[8] | ZHAO Ying-Xing, WANG Biao, LIU Qing, SONG Tong, ZHANG Xue-Peng, CHEN Yuan-Quan, SUI Peng. Characteristics of farmland water consumption under two-year wheat-maize interannual rotation patterns in Heilonggang Plain [J]. Acta Agronomica Sinica, 2022, 48(7): 1787-1779. |
[9] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[10] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[11] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[12] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[13] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[14] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[15] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
|