Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2663-2670.doi: 10.3724/SP.J.1006.2022.11084

• RESEARCH NOTES • Previous Articles     Next Articles

Synergistic effect of moisture and foliar-applied humic acid on oat grain yield and β-glucan content

LI Ying-Hao(), WANG Qi(), ZHAO Bao-Ping(), LIU Yan-Di, MI Jun-Zhen, WU Jun-Ying, LIU Jing-Hui   

  1. Agricultural College, Inner Mongolia Agricultural University / Inner Mongolia Coarse Grain Engineering Research Center, Hohhot 010019, Inner Mongolia, China
  • Received:2021-09-23 Accepted:2022-01-06 Online:2022-10-12 Published:2022-07-20
  • Contact: ZHAO Bao-Ping E-mail:2466528827@qq.com;512774967@qq.com;zhaobaoping82@163.com
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31560373);National Natural Science Foundation of China(31960378);China Agriculture Research System of MOF and MARA(CARS-07);International Cooperation Key Special Project of the National Key Research and Development Program(2018YFE0107900)

Abstract:

In order to clarify the synergistic effect of water and humic acid on the yield and quality improvement of oats, we set two water treatments of dry farming and limited irrigation, respectively, and analyzed the effects of humic acid spraying on photosynthetic characteristics of oat leaves, grain yield, and β-glucan content using the oat varieties Mengnong Dayan 1 and Neiyan 5 as the research materials. The results showed that the application of humic acid at the booting and flowering stages could significantly improve the photosynthetic characteristics of oat leaves. Compared with irrigation, the photosynthetic rate of Mengnong Dayan 1 leaves increased by 31.78%-123.72% in dry farming, while the increased rate of Neiyan 5 leaves was basically the same as that in dry farming and irrigation. The grain yield and β-glucan content of the two varieties were significantly increased by spraying humic acid in dry farming, especially Neiyan 5, which increased by 5.60%-74.68% and 11.24%-19.56%, respectively. Compared with dry treatment, the content of β-glucan increased by 11.30%-33.29% and 7.76%-43.81%, respectively, when HA was sprayed under irrigation. Through the analysis of the correlation between the indexes, the photosynthetic rate, β-glucan content, spike height, spikelet number per spike, grain weight per plant, thousand-grain weight, and grain yield were significantly positive correlation of Mengnong Dayan 1, the grain yield, spike height, spikelet number per spike, grain weight per plant, and thousand-grain weight were significantly positive correlation, and there was a significant positive correlation between β-glucan content, spikelet number per spike, thousand-grain weight, and grain yield (P < 0.05). While there was a positive correlation between β-glucan content and grain yield components of Neiyan 5, but it did not reach a significant level. In conclusion, the synergistic effect of water and humic acid can effectively improve the photosynthetic performance of oat leaves, and synergistically increase grain yield and β-glucan content.

Key words: water, humic acid, oat, yield, β-glucan

Fig. 1

Precipitation distribution of oat during the growing period"

Table 1

Photosynthetic parameters of oat leaves at heading stage under different water and humic acid spraying treatments"

年份
Year
品种
Variety
水分
Water
处理
Treatment
胞间CO2浓度
Ci
(mmol mol-1)
光合速率
Pn
(μmol m-2 s-1)
气孔导度
Gs
(mmol mol-1)
蒸腾速率
Tr
(mmol m-2 s-1)
2019 蒙农大燕1号
Mengnong Dayan 1
DS HA 298.0±12.9 a 13.2±1.5 c 170.2±24.3 d 5.2±0.1 c
WT 248.6±40.7 b 5.9±0.7 f 79.2±30.2 e 3.1±0.8 e
WW HA 277.8±34.2 ab 22.5±0.2 a 592.4±39.9 a 8.3±0.7 a
WT 237.8±22.1 b 19.5±1.3 b 588.8±15.6 a 7.0±0.2 b
内燕5号
Neiyan 5
DS HA 278.9±36.9 ab 10.4±0.2 d 174.7±35.1 d 4.7±0.7 cd
WT 271.2±31.0 ab 7.7±0.2 e 138.1±18.2 d 3.7±0.3 de
WW HA 265.2±15.2 ab 21.7±0.4 a 419.9±28.4 b 7.8±1.0 ab
WT 260.8±10.0 ab 21.6±0.7 a 365.8±29.4 c 7.5±0.7 ab
2020 蒙农大燕1号
Mengnong Dayan 1
DS HA 266.0±25.5 a 14.1±1.6 bc 164.7±19.3 c 5.3±0.6 ab
WT 193.3±32.5 c 10.7±0.8 c 143.0±11.5 c 3.7±0.2 bc
WW HA 268.0±27.2 a 25.9±4.0 a 405.7±22.1 a 7.3±0.9 a
WT 199.5±14.5 c 20.5±2.1 ab 359.0±17.3 a 5.6±0.4 ab
内燕5号
Neiyan 5
DS HA 256.3±37.2 ab 12.0±2.1 c 167.7±6.7 c 3.5±0.7 bc
WT 227.3±14.2 abc 11.6±1.7 c 121.3±7.6 c 1.8±0.1 c
WW HA 254.3±34.5 ab 23.4±2.2 a 369.7±21.4 a 6.2±0.7 ab
WT 210.3±14.6 bc 19.1±1.8 ab 247.7±35.6 b 5.8±0.1 ab
水分 Water (W) ns *** *** ***
喷施 Spray (S) *** *** *** ***
W×S ns ns ns *

Fig. 2

SPAD value of oat leaves under different water and humic acid treatments DS: dry farming; WW: irrigation; HA: humic acid; WT: water. Different lowercase letters in the picture indicate significant differences at P < 0.05."

Fig. 3

Changes of β-glucan content in oat grains under different water and humic acid treatments DS: dry farming; WW: irrigation; HA: humic acid; WT: water."

Table 2

Changes in the yield components of oats under different water and humic acid treatments"

年份
Year
品种
Variety
水分
Water
处理
Treatment
单位面积穗数
Panicle number
(×104 hm-2)
穗长
Panicle height
(cm)
单穗小穗数
Spikelet number
per spike
单穗粒重
Grain weight per
plant (g)
千粒重
1000-kernel weight (g)
2019 蒙农大燕1号
Mengnong Dayan 1
DS HA 200.7±11.4 cde 18.3±3.5 ab 23.9±6.5 bcd 0.98±0.10 ab 21.6±0.7 c
WT 184.2±12.4 e 16.1±3.7 ab 21.5±3.4 bcd 0.85±0.13 ab 20.2±0.5 de
WW HA 246.8±6.3 a 20.7±5.3 a 38.7±3.4 a 1.59±0.07 a 25.9±1.2 a
WT 225.7±28.0 abc 17.9±1.5 ab 30.6±2.4 ab 1.02±0.07 ab 24.8±0.3 ab
内燕5号
Neiyan 5
DS HA 197.0±7.5 de 14.6±3.5 b 18.8±3.6 cd 0.62±0.09 b 20.6±0.3 cd
WT 179.3±21.1 e 14.1±3.0 b 13.6±2.3 d 0.62±0.09 b 19.3±0.2 e
WW HA 237.3±6.7 ab 17.5±1.3 ab 30.3±12.9 ab 1.37±0.07 ab 24.8±1.2 ab
WT 213.0±15.3 bcd 17.1±1.0 ab 28.7±5.3 abc 1.05±0.07 ab 24.2±0.9 b
2020 蒙农大燕1号
Mengnong Dayan 1
DS HA 196.7±19.3 b 19.7±1.9 d 33.8±2.1 ab 1.58±0.05 ab 20.9±0.7 b
WT 184.0±13.1 b 17.2±1.2 d 29.7±3.5 bc 1.24±0.09 ab 19.7±1.5 b
WW HA 258.7±19.0 a 44.2±3.7 a 43.4±6.5 a 2.38±0.10 a 25.1±0.6 a
WT 254.7±4.6 a 39.9±5.4 ab 42.5±7.7 a 2.27±0.14 ab 24.1±1.7 a
内燕
5号
Neiyan 5
DS HA 190.3±7.5 b 18.3±2.5 d 24.8±3.3 c 1.29±0.10 ab 19.9±1.7 b
WT 181.0±18.2 b 17.7±1.8 d 23.1±0.9 c 1.05±0.08 b 19.6±1.3 b
WW HA 246.3±22.5 a 34.8±3.3 bc 44.2±3.7 a 2.04±0.09 ab 25.1±0.3 a
WT 245.3±27.0 a 33.1±0.9 c 39.9±5.4 a 1.86±0.13 ab 23.7±1.8 a

Fig. 4

Changes of oat grain yield under different water and humic acid treatments DS: dry farming; WW: irrigation; HA: humic acid; WT: water. Different lowercase letters in the picture indicate significant differences at P < 0.05."

Fig. 5

Correlation analysis between indicators A: Mengnong Dayan 1; B: Neiyan 5."

[1] 任长忠, 崔林, 何峰, 欧阳韶晖, 胡新中, 李再贵, 陕方. 我国燕麦荞麦产业技术体系建设与发展. 吉林农业大学学报, 2018, 40: 524-532.
Ren C Z, Cui L, He F, Ou-Yang S H, Hu X Z, Li Z G, Shan F. Construction and development of China oat and buckwheat industrial technology system. J Jilin Agric Univ, 2018, 40: 524-532. (in Chinese with English abstract)
[2] Wood P J. Cereal beta-glucans in diet and health. J Cereal Sci, 2007, 45: 230-238.
[3] Nazare J-A, Normand S, Triantafyllou A O, Desage M, Laville M. Modulation of the postprandial phase by β-glucan in overweight subjects: effects on glucose and insulin kinetics. Mol Nutr Food Res, 2009, 53: 361-369.
doi: 10.1002/mnfr.200800023
[4] Marshall A, Cowan S, Edwards S, Griffiths I, Howarth C, Langdon T, White E. Crops that feed the world 9. Oats-a cereal crop for human and livestock feed with industrial applications. Food Secur, 2013, 5: 13-33.
doi: 10.1007/s12571-012-0232-x
[5] Bodner G, Nakhforoosh A, Kaul H P. Management of crop water under drought: a review. Agron Sustain Dev, 2015, 35: 401-442.
doi: 10.1007/s13593-015-0283-4
[6] Kadam N N, Xiao G, Melgar R J. Chapter 3: agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv Agron, 2014, 127: 111-156.
[7] 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
Ren C Z, Hu Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013 (in Chinese)
[8] Liu D Q, Wan F, Guo R, Li F M, Cao H H, Sun G J. GIS-based modeling of potential yield distributions for different oat varieties in China. Math Comput Mod, 2011, 54: 869.
[9] 苏日娜. 中国燕麦产业发展研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2013.
Su R N. Research on the Development of China’s Oat Industry. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2013. (in Chinese with English abstract)
[10] Humphreys D G, Mather D E. Heritability of β-glucan, groat- percentage, and crown rust resistance in two oat crosses. Euphytica, 1996, 91: 359-364.
doi: 10.1007/BF00033098
[11] Doehlert D C, McMullen M S, Hammond J J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci, 2001, 41: 1066-1072.
doi: 10.2135/cropsci2001.4141066x
[12] Brunner B R, Freed R D. Oat grain β-glucan content as affected by nitrogen level, location and year. Crop Sci, 1994, 34: 473-476.
doi: 10.2135/cropsci1994.0011183X003400020031x
[13] Peterson D M, Wesenberg D M, Burrup D E. β-glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Sci, 1995, 35: 965-970.
doi: 10.2135/cropsci1995.0011183X003500040005x
[14] Guler M. Nitrogen and irrigation effects on grain beta-glucan content of oats (Avena sativa L.). Austr J Crop Sci, 2011, 5: 239-244.
[15] Chernyshova A A, White P J, Scott M P. Selection for nutritional function and agronomic performance in oat. Crop Sci, 2007, 47: 2330-2339.
doi: 10.2135/cropsci2006.12.0759
[16] Cervantes-Martinez C T, Frey K J, White P J. Correlated responses to selection for greater β-glucan content in two oat populations. Crop Sci, 2002, 42: 730-738.
[17] 程亮, 张保林, 王杰, 史亚龙, 陈可可. 腐植酸肥料的研究进展. 中国土壤与肥料, 2011, (5): 1-6.
Cheng L, Zhang B L, Wang J, Shi Y L, Chen K K. Research progress of humic acid fertilizers. Soils Fert China, 2011, (5): 1-6. (in Chinese with English abstract)
[18] Lotfi R, Kalaji H M, Valizadeh G R, Khalilvand Behrozyar E, Hemati A, Gharavi-Kochebagh P, Ghassemi A. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, 2018, 56: 962-970.
doi: 10.1007/s11099-017-0745-9
[19] 刘伟, 刘景辉, 萨如拉. 腐植酸水溶肥料对燕麦叶片保护酶活性和渗透物质的影响. 灌溉排水学报, 2014, 33(1): 107-109.
Liu W, Liu J H, Sarula. Effects of humic acid water-soluble fertilizers on protective enzyme activities and osmotic substances in oat leaves. J Irrig Drain, 2014, 33(1): 107-109. (in Chinese with English abstract)
[20] Robredo A, Pérez-lópez U, Lacuesta M, Mena-Petite A, Munoz- Rueda A. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant, 2010, 54: 285-292.
doi: 10.1007/s10535-010-0050-y
[21] Liu B H, Liang J, Tang G M, Wang X F, Liu F C, Zhao D C. Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Sci Hortic, 2019, 250: 230-235.
doi: 10.1016/j.scienta.2019.02.056
[22] Janani P, Kumar N, Jegadeeswari V. Dynamics of gas exchange and chlorophyll fluorescence parameters of cocoa genotypes in response to water deficit. J Pharm Phytochem, 2019, 8: 415-419.
[23] Farooq M, Wahid A, Kobayashi N. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009, 29: 185-212.
doi: 10.1051/agro:2008021
[24] 邓万和, 王强, 吕耀昌, 周素梅. 品种和环境效应对燕麦β-葡聚糖含量的影响. 中国粮油学报, 2005, 20(2): 30-32.
Deng W H, Wang Q, Lyu Y C, Zhou S M. Effects of variety and environmental effects on the content of oat β-glucan. J Chin Cereals Oils Assoc, 2005, 20(2): 30-32. (in Chinese with English abstract)
[25] 王冰, 朱莉, 李茂玮, 詹晓北. 适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究. 食品与发酵工业, 2021, 47(17): 27-33.
Wang B, Zhu L, Li M W, Zhan X B. Adaptive domestication to produce low molecular weight β-glucan and its antioxidant activity. Food Ferment Ind Sin, 2021, 47(17): 27-33. (in Chinese with English abstract)
[26] 张俊峰, 段娜, 刘兵兵, 刘龙龙, 赵文千. 灌浆期干旱胁迫对燕麦籽粒β-葡聚糖含量的影响. 山西农业科学, 2020, 48: 884-888.
Zhang J F, Duan N, Liu B B, Liu L L, Zhao W Q. Effects of drought stress during grain filling period on β-glucan content in oat grains. Shanxi Agric Sci, 2020, 48: 884-888. (in Chinese with English abstract)
[27] Zhang X, Huang G, Bian X, Zhao Q G. Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizosphere. Plant Soil, 2013, 368: 407-417.
doi: 10.1007/s11104-012-1528-5
[28] 韩文元. 水分与腐植酸对燕麦抗旱性、产量形成和品质的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2016.
Han W Y. Effects of Moisture and Humic Acid on Drought Resistance, Yield Formation and Quality of Oats. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016. (in Chinese with English abstract)
[29] 孙雯. 水分和腐植酸对燕麦光合、糖代谢及产量和β-葡聚糖形成的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2018.
Sun W. Effects of Water and Humic Acid on Oat Photosynthesis, Sugar Metabolism, Yield and β-glucan Formation. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract)
[30] Dong C C, Yong I J, Nam J H, Chung G C, Ji H C, Su J K, Hong S Y. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Res, 2018, 215: 156-162.
doi: 10.1016/j.fcr.2017.10.008
[31] Moghadam H R T, Khamene M K, Zahedi H. Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding at different growth stages. Maydica, 2014, 59: 125-129.
[32] Hartz T K, Bottoms T G. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Hortic Sci, 2010, 45: 906-910.
[33] Ahmad W, Shah Z, Khan F, Ali S, Malik W. Maize yield and soil properties as influenced by integrated use of organic, inorganic and bio-fertilizers in a low fertility soil. Soil Environ, 2013, 32: 121-129.
[34] 李英浩, 刘景辉, 朱珊珊. 干旱胁迫下腐植酸对燕麦叶片光合性能的调控效应. 麦类作物学报, 2019, 39: 1385-1391.
Li Y H, Liu J H, Zhu S S. Regulation effects of humic acid on photosynthetic performance of oat leaves under drought stress. J Triticeae Crops, 2019, 39: 1385-1391. (in Chinese with English abstract)
[1] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[2] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[3] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[4] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[5] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[6] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[7] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[8] ZHAO Ying-Xing, WANG Biao, LIU Qing, SONG Tong, ZHANG Xue-Peng, CHEN Yuan-Quan, SUI Peng. Characteristics of farmland water consumption under two-year wheat-maize interannual rotation patterns in Heilonggang Plain [J]. Acta Agronomica Sinica, 2022, 48(7): 1787-1779.
[9] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[10] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[11] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[12] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[13] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[14] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[15] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[2] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[3] Qiu Zhaofeng; Zhai Liye. THE ESTIMATION FOR SURFACE AREA OF SPIKE AND AWN OF THE COMMON WHEAT[J]. Acta Agron Sin, 1985, 11(02): 138 .
[4] PENG Ze-Bin; TIAN Zhi-Guo; LIU Xin-Zhi. Studies on the Application of Modified HS Reciprocal Recurrent Selection in Maize Population Improvement[J]. Acta Agron Sin, 2004, 30(12): 1204 -1209 .
[5] Wang Yulong; Yao Youli; Xu Jiakuan; Li Tanyun; Jiang Junmin; Cai Jianzhong. Fertilities of Spikelets at Different Positions of the Panicle in Rice (Oryza sativa L.)[J]. Acta Agron Sin, 1995, 21(01): 29 -38 .
[6] LI Chun-Yan;FENG Chao-Nian;WANG Ya-Lei;ZHANG Rong;GUO Wen-Shan;ZHU Xin-Kai;PENG Yong-Xin. Chain Length Distribution of Debranched Amylopectin and Its Relationship with Physicochemical Properties of Starch in Different Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(08): 1240 -1245 .
[7] ZHANG Yong-Ping;WANG Zhi-Min;HUANG Qin;XIE Min. Changes of Chloroplast Ultramicrostructure and Function of Different Green Organs in Wheat under Limited Irrigation[J]. Acta Agron Sin, 2008, 34(07): 1213 -1219 .
[8] XIONG Fei;WANG Zhong;ZHU Fang-Li;ZHANG Zhi-Heng. A Comparative Study on the Main Quality Characters of Caryopsis in Different Types of Maize[J]. Acta Agron Sin, 2005, 31(02): 259 -261 .
[9] XIA Jiu-Cheng;YANG Ke-Cheng;ZHANG Huai-Yu. Effects of Population Improvement by Mass Selection on the Tropical Maize Population MW964[J]. Acta Agron Sin, 2004, 30(10): 980 -989 .
[10] Lin zhonghui;Mo Xingguo;Xiang Yueqing. Research Advances on Crop Growth Models[J]. Acta Agron Sin, 2003, 29(05): 750 -758 .