Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 3074-3089.doi: 10.3724/SP.J.1006.2023.33009

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of water and nitrogen application on root attenuation characteristics and yield of spring maize under shallow buried drip irrigation

ZHANG Yu-Qin1,2(), YANG Heng-Shan1,2,*(), ZHANG Rui-Fu1, LI Cong-Feng3, TI Jun-Yang1, GE Xuan-Liang1, YANG Jing-Hong1   

  1. 1College of Agronomy, Inner Mongolia Minzu University, Tongliao 028042, Inner Mongolia, China
    2Engineering Research Center of Forage Crops of Inner Mongolia Autonomous Region, Tongliao 028042, Inner Mongolia, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-02-16 Accepted:2023-05-24 Online:2023-11-12 Published:2023-06-14
  • Supported by:
    National Natural Science Foundation of China(31960382);National Natural Science Foundation of China(32160509)

Abstract:

In order to explore the effects of shallow drip irrigation on the yield and root decay characteristics of spring corn after silking, in the Agricultural and Animal Husbandry High Tech Demonstration Park of Horqin District, Tongliao City from 2017 to 2020, traditional border irrigation conventional nitrogen application (W: 4000 m3 hm-2, N: 300 kg hm-2) was used as the control (CK), and drip irrigation quotas were used as the main treatments. Three levels of traditional border irrigation conventional irrigation were set: 40% (W1: 1600 m3 hm-2), 50% (W2: 2000 m3 hm-2), and 60% (W3: 2400 m3 hm-2), Using nitrogen application rate as the secondary treatment, three levels of conventional nitrogen application rate [50% (N1: 150 kg hm-2), 70% (N2: 210 kg hm-2), and conventional nitrogen application rate (N3: 300 kg hm-2)] were set up to determine the changes in spring maize yield under different water and nitrogen treatments. In 2019 and 2020, the BTC-100 micro root monitoring system was used to continuously monitor root system of spring maize in the 0-100 cm soil layer at the 0-50 days stage after silking. The results showed that the yield of spring maize was significantly higher in W3N3 than CK for four consecutive years, and there was not significant difference compared with W3N2, W2N3, and W2N2 treatments. The nitrogen agronomic efficiency of W3N2 was also the highest at the same time. Compared with CK, root length density, the total root surface area, and the average root diameter of W3N3 all increased in 0-60 cm soil layer while root length density, the total root surface area, and the average root diameter were less in 80-100 cm soil layer; the decrease in root length density, the total root surface area, and the average root diameter was lower from 0 d to 50 d after silking in two years, in which the root length density of W3N3 and CK decreased by 10.29% and 8.83%, and 15.04% and 14.08% and the average root decay rate of W3N3 decreased by 5.23% and 4.43% compared with CK. Under the shallow buried drip irrigation, the root length density, the average diameter, and the total root surface area of W3N3 and W3N2 were both higher than those of other treatments, whose decrease extent of average root decay rate were lower in 0-60 cm soil layer and differences were less in 80-100 cm soil layer from 0 day to 50 days after silking; During the 0-50 day stage after silking, the difference of average root decay rate between W3N3 and W3N2 was not significant, and W3N2 decreased by 5.68% and 5.44%, 9.75% and 11.98%, 7.16% and 6.77%, respectively, compared with W3N1, W2N2, and W1N2 in two years. The variance analysis showed that both drip irrigation and nitrogen application had a significant impact on yield and nitrogen fertilizer agronomic efficiency. The drip irrigation amount had a significant impact on the root length density, the total root surface area, and the average root decay rate of the 0-60 cm soil layer at the 0-50 day stage after silking. Nitrogen application amount had a significant impact on root length density of the 0-60 cm soil layers at the 0-50 day stage after silking, the total root surface area of the 0-60 cm soil layers at the 0-30 day stage after silking, and the average root decay rate of the 0-40 cm soil layer at the 0-50 day stage after silking. In summary, the root length density, the total root surface area, and the average root diameter of the 0-60 cm soil layers of W3N3 and W3N2 under shallow burying drip irrigation were relatively higher, and the decrease was lower within the 0-50 day stage after silking, the average root decay rate was low, and the yield difference between the two was not significant, however, W3N2 had higher nitrogen agronomic efficiency, which could be recommended as a suitable water and nitrogen application mode for water-saving, high-yield, and efficient cultivation of corn for the irrigation area of the Xiliaohe plain.

Key words: maize, shallow buried drip irrigation, water and nitrogen application, root attenuation, yield

Table 1

Irrigation and nitrogen application at different growth stages"

生育期
Stage
灌溉次数
Number of irrigation
灌溉量Irrigation amount (m3 hm-2) 施氮量Nitrogen application rate (kg hm-2)
W1 W2 W3 CK N1 N2 N3 CK
播种Sowing seeds 1 550 550 550 550 35.10 35.10 35.10 35.1
拔节期Jointing stage 2 245 335 425 575 34.47 52.47 79.47
小喇叭口期Small bell stage 3 245 335 425 1150 264.9
大喇叭口期Big bell stage 4 200 270 350 575 68.94 104.94 158.94
吐丝期Silking stage 5 150 215 275 1150 11.49 17.49 26.49
灌浆期Filling stage 6 150 215 275
7 60 80 100
合计Total 1600 2000 2400 4000 150 210 300 300

Fig. 1

Microroot canal space layout"

Fig. 2

Schematic diagram of maize root growth monitored by micro root canal method from silking stage to 50 days after silking"

Fig. 3

Temporal and spatial changes of root length density of spring maize under different water and nitrogen application W1N3: traditional border irrigation 40% (1600 m3 hm-2), conventional nitrogen application (300 kg hm-2); W1N2: traditional border irrigation 40% (1600 m3 hm-2), conventional nitrogen application 70% (210 kg hm-2); W1N2: traditional border irrigation 40% (1600 m3 hm-2), conventional nitrogen application 50% (150 kg hm-2); W2N3: traditional border irrigation 50% (2000 m3 hm-2), conventional nitrogen application (300 kg hm-2); W2N2: traditional border irrigation 50% (2000 m3 hm-2), conventional nitrogen application 70% (210 kg hm-2); W2N2: traditional border irrigation 60% (1600 m3 hm-2), conventional nitrogen application 50% (150 kg hm-2); W3N3: traditional border irrigation 60% (2400 m3 hm-2), conventional nitrogen application (300 kg hm-2); W3N2: traditional border irrigation 60% (2400 m3 hm-2), conventional nitrogen application 70% (210 kg hm-2); W3N2: traditional border irrigation 60% (2400 m3 hm-2), conventional nitrogen application 50% (150 kg hm-2); CK: traditional border irrigation (4000 m3 hm-2), conventional nitrogen application (300 kg hm-2)."

Table 2

Variance analysis of root length density under different water and nitrogen application in shallow drip irrigation"

土层
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0 d 10 d 20 d 30 d 40 d 50 d
0-20 灌量Irrigation amount (A) 467.972** 405.180** 291.589** 320.021** 339.451** 360.644**
施氮量Nitrogen application (B) 56.785** 50.791** 39.140** 43.616** 50.555** 54.992**
年份Year (C) 7.274* 5.312* 3.610 3.344 2.903 3.281
灌量×施氮量A×B 0.916 0.841 0.630 0.636 0.588 0.513
灌量×施氮量×年份A×B×C 0.077 0.027 0.021 0.126 0.025 0.037
20-40 灌量Irrigation amount (A) 252.027** 228.095** 256.931** 210.217** 240.367** 270.290**
施氮量Nitrogen application (B) 11.012** 11.663** 14.394** 13.045** 16.169** 19.200**
年份Year (C) 1.075 0.877 1.110 1.336 1.386 1.209
灌量×施氮量A×B 0.677 0.701 1.079 0.892 1.071 1.389
灌量×施氮量×年份A×B×C 0.073 0.067 0.039 0.010 0.007 0.043
40-60 灌量Irrigation amount (A) 729.284** 734.078** 742.113** 601.307** 562.018** 686.459**
施氮量Nitrogen application (B) 69.194** 79.163** 80.761** 75.835** 76.808** 100.871**
年份Year (C) 8.746** 7.335* 7.401** 5.904* 5.505* 6.007*
灌量×施氮量A×B 4.963 5.256 5.890** 6.216** 7.158** 9.807**
灌量×施氮量×年份A×B×C 0.084 0.028 0.017 0.007 0.001 0.003
60-80 灌量Irrigation amount (A) 2.121 2.301 3.539* 3.668* 3.711* 6.363**
施氮量Nitrogen application (B) 0.519 0.884 1.298 2.017 2.575 1.784
年份Year (C) 1.049 0.884 1.303 0.978 0.619 1.748
灌量×施氮量A×B 0.790 0.563 0.693 0.625 0.800 1.554
灌量×施氮量×年份A×B×C 0 0.005 0.017 0.002 0.017 0.163
80-100 灌量Irrigation amount (A) 0.293 1.106 3.366* 5.124* 0.615 3.146
施氮量Nitrogen application (B) 0.891 0.764 1.471 2.351 0.277 1.363
年份Year (C) 2.907 1.802 1.919 0.881 0.176 1.191
灌量×施氮量A×B 2.675* 2.363 3.562* 3.961** 0.386 1.702
灌量×施氮量×年份A×B×C 0.104 0.027 0.011 0.009 0.001 0.011

Fig. 4

Effect of combined application of water and nitrogen application on the total root surface area in spring maize Abbreviations are the same as those given in Fig. 3."

Table 3

Variance analysis of the total root surface area under different water and nitrogen application in shallow drip irrigation"

深度
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0 d 10 d 20 d 30 d 40 d 50 d
0-20 灌量Irrigation amount (A) 1426.422** 3496.397** 2945.179** 1089.132** 109.027** 76.852**
施氮量Nitrogen application (B) 116.350** 273.314** 98.636** 26.146** 3.102 1.515
年份Year (C) 38.986** 167.959** 137.439** 32.360** 2.692 3.526
灌量×施氮量A×B 5.659** 7.782** 25.258** 7.706** 1.133 0.467
灌量×施氮量×年份A×B×C 1.749 1.051 2.085 2.318 0.219 0.102
20-40 灌量Irrigation amount (A) 1972.932** 12,467.822** 3234.093** 7635.317** 47.932** 56.129**
施氮量Nitrogen application (B) 120.788** 907.160** 75.518** 386.436** 3.142 3.099
年份Year (C) 78.785** 392.604** 82.632** 1.393 0.157 0.759
灌量×施氮量A×B 7.740** 32.139** 15.076** 66.259** 0.408 0.300
灌量×施氮量×年份A×B×C 2.693* 12.871** 5.714** 7.975** 0.019 0.004
40-60 灌量Irrigation amount (A) 1482.564** 11,612.839** 5572.517** 5804.497** 29.108** 31.819**
施氮量Nitrogen application (B) 116.235** 498.086** 316.128** 579.984** 2.852 3.195
年份Year (C) 86.850** 699.943** 309.187** 372.158** 1.821 2.241
灌量×施氮量A×B 15.678** 114.741** 105.435** 85.864** 0.425 0.390
灌量×施氮量×年份A×B×C 0.002 0.746 0.016 0.013 0 0
60-80 灌量Irrigation amount (A) 59.806** 68.629** 34.183** 25.577** 16.703** 13.470**
施氮量Nitrogen application (B) 2.493 1.849 2.840 3.078 1.644 1.337
年份Year (C) 19.626** 19.517** 9.422** 6.854* 4.286* 3.227
灌量×施氮量A×B 0.755 2.721* 0.972 0.959 1.239 1.386
灌量×施氮量×年份A×B×C 0 0.106 0 0 0 0
80-100 灌量Irrigation amount (A) 37.468** 117.640** 24.667** 22.671** 21.148** 19.326**
施氮量Nitrogen application (B) 2.166 3.081 3.818* 2.587 1.774 3.197
年份Year (C) 21.698** 32.852** 10.246* 8.447** 8.442** 6.456*
灌量×施氮量A×B 1.556 4.534** 0.922 0 0.848 1.268
灌量×施氮量×年份A×B×C 0 0.473 0 0 0 0

Fig. 5

Effect of water and nitrogen application on the average root diameter in spring maize Abbreviations are the same as those given in Fig. 3."

Table 4

Variance analysis of root mean diameter under different water and nitrogen application in shallow drip irrigation"

土层
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0 d 10 d 20 d 30 d 40 d 50 d
0-20 灌量Irrigation amount (A) 221.477** 104.306** 168.826** 67.514** 115.333** 16.726**
施氮量Nitrogen application (B) 12.078** 4.969** 3.715 1.704 3.096 0.418
年份Year (C) 0.275 1.617 0.578 0.938 1.235 0.029
灌量×施氮量A×B 0.657 0.379 0.329 0.367 0.46 0.088
灌量×施氮量×年份A×B×C 0.976 0.281 0.661 0.331 0.205 0.068
20-40 灌量Irrigation amount (A) 76.94** 241.468** 264.564** 264.446** 207.159** 359.881**
施氮量Nitrogen application (B) 4.086* 14.935** 10.707** 14.892** 9.094** 18.946**
年份Year (C) 0.651 10.127** 83.468** 91.443** 50.204** 22.335**
灌量×施氮量A×B 0.473 1.795 0.895 2.889 1.474 2.456
灌量×施氮量×年份A×B×C 0.045 0.228 0.601 0.157 0.237 0.896
40-60 灌量Irrigation amount (A) 67.514** 22.453** 264.463** 317.821** 558.274** 462.248**
施氮量Nitrogen application (B) 1.704 1.138 11.421** 14.964** 21.970** 17.927**
年份Year (C) 0.938 0.745 6.594* 0.940 8.119** 11.159**
灌量×施氮量A×B 0.367 0.439 5.674** 4.881** 11.302** 10.946**
灌量×施氮量×年份A×B×C 0.331 0.057 0.526 1.153 1.886 1.587
60-80 灌量Irrigation amount (A) 11.025** 25.449** 9.037** 7.877** 6.008** 8.199**
施氮量Nitrogen application (B) 1.908 1.355 2.369 2.475 2.281 2.462
年份Year (C) 0.616 5.004* 0.039 1.308 0.731 0.188
灌量×施氮量A×B 2.133 3.068* 0.595 0.944 0.200 0.493
灌量×施氮量×年份A×B×C 0.534 1.074 0.682 1.421 0.135 0.425
80-100 灌量Irrigation amount (A) 6.454** 36.900** 13.062** 15.291** 10.703** 11.594**
施氮量Nitrogen application (B) 1.026 4.290* 1.229 2.987 1.653 2.647
年份Year (C) 0.732 0.604 0 0.123 0.050 0.841
灌量×施氮量A×B 0.341 0.561 0.193 0.324 0.322 0.235
灌量×施氮量×年份A×B×C 0.168 0.358 0.355 0.222 0.194 0.134

Fig. 6

Dynamic changes in root decay rate of spring maize under water and nitrogen application Abbreviations are the same as those given in Fig. 3."

Fig. 7

Changes in average root decay rate of spring maize under water and nitrogen application Abbreviations are the same as those given in Fig. 3."

Table 5

Variance analysis of root senescence rate under different water and nitrogen application in shallow drip irrigation"

土层
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0-10 d 10-20 d 20-30 d 30-40 d 40-50 d
0-20 灌量Irrigation amount (A) 17.074** 14.140** 34.225** 15.816** 17.767**
施氮量Nitrogen application (B) 3.460* 3.792* 4.803* 8.572** 3.336*
年份Year (C) 0.003 0.019 0.098 0.048 0.313
灌量×施氮量A×B 0.494 0.212 1.654 1.373 0.218
灌量×施氮量×年份A×B×C 0.305 0.037 2.311 1.460 0.094
20-40 灌量Irrigation amount (A) 33.334** 41.379** 39.093** 44.169** 31.560**
施氮量Nitrogen application (B) 6.355** 5.656** 8.782** 6.856** 5.836**
年份Year (C) 0.051 1.012 2.098 0.001 0.185
灌量×施氮量A×B 0.501 1.598 2.465 0.585 0.727
灌量×施氮量×年份A×B×C 0.450 1.371 2.087 0.360 0.689
40-60 灌量Irrigation amount (A) 15.753** 5.490** 4.798* 6.483** 9.718**
施氮量Nitrogen application (B) 4.747* 0.704 2.562 2.406 3.362*
年份Year (C) 0.013 0.087 0.040 0.071 0.005
灌量×施氮量A×B 0.745 0.293 0.332 0.561 0.307
灌量×施氮量×年份A×B×C 0.475 0.100 0.027 0.032 0.036
60-80 灌量Irrigation amount (A) 5.857** 5.346** 1.714 1.279 3.367*
施氮量Nitrogen application (B) 3.790* 1.450 2.434 0.650 0.610
年份Year (C) 0 0.958 0.008 0.047 1.177
灌量×施氮量A×B 0.507 0.775 0.632 0.429 1.056
灌量×施氮量×年份A×B×C 0 0.498 0.081 0.096 0.589
80-100 灌量Irrigation amount (A) 2.999 1.806 0.630 0.050 0.027
施氮量Nitrogen application (B) 0.565 0.613 0.417 0.006 0.060
年份Year (C) 0 0.034 0.294 0.095 1.106
灌量×施氮量A×B 0.325 0.216 0.169 0.017 0.013
灌量×施氮量×年份A×B×C 0.043 0.033 0.027 0.004 0.010

Fig. 8

Effect of different water and nitrogen application on the yield of spring maize Abbreviations are the same as those given in Fig. 3. Different lowercase letters indicate significant difference at P < 0.05 among treatments in the same year."

Fig. 9

Effect of different water and nitrogen application on nitrogen agronomic efficiency in spring maize Abbreviations are the same as those given in Fig. 3. Different lowercase letters indicate significant difference at P < 0.05 among treatments in the same year."

Table 6

Variance analysis of yield and nitrogen agronomic efficiency under different water and nitrogen application in shallow drip irrigation"

差异源
Source of difference
籽粒产量
Grain yield
氮肥农学效率
Nitrogen agronomic efficiency
灌量Irrigation amount (A) 1158.184** 171.440**
施氮量Nitrogen application (B) 880.362** 285.551**
年份Year (C) 1187.540** 376.737**
灌量×施氮量A×B 21.014 1.587
灌量×施氮量×年份A×B×C 5.595 3.790
[1] 王崇桃, 李少昆, 韩伯棠. 玉米高产之路与产量潜力挖掘. 科技导报, 2006, 24(4): 8-11.
Wang C T, Li S K, Han B T. Approaches to high-yielding and yield potential exploration in corn. Sci Technol Rev, 2006, 24(4): 8-11 (in Chinese with English abstract).
[2] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波. 超高产春玉米的根系特征. 作物学报, 2011, 37: 735-743.
doi: 10.3724/SP.J.1006.2011.00735
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Bi W B. Root characteristics of super high-yield spring maize. Acta Agron Sin, 2011, 37: 735-743 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00735
[3] Chilundo M, Joel A, Wesström I, Brito R, Messing I. Effects of reduced irrigation dose and slow-release fertilizer on nitrogen use efficiency and crop yield in a semiarid loamy sand. Agric Water Manag, 2016, 168: 68-77.
doi: 10.1016/j.agwat.2016.02.004
[4] 杜君, 杨占平, 魏义长, 杨竹青, 雷宏军, 张运红, 和爱玲. 北方夏玉米滴灌施肥一体化技术应用效果. 核农学报, 2020, 34: 621-628.
doi: 10.11869/j.issn.100-8551.2020.03.0621
Du J, Yang Z P, Wei Y C, Yang Z Q, Lei H J, Zhang Y H, He A L. Application effect of integrated drip irrigation and fertilization Technology for summer maize in Northern China. J Nucl Agric Sci, 2020, 34: 621-628 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2020.03.0621
[5] 梅园雪, 冯玉涛, 冯天骄, 汪伟, 孙宝忠. 玉米浅埋滴灌节水种植模式产量与效益分析. 玉米科学, 2018, 26(1): 98-102.
Mei Y X, Feng Y T, Feng T J, Wang W, Sun Z B. Brief discussion on the efficient water-saving planting mode of shallow buried drip irrigation. J Maize Sci, 2018, 26(1): 98-102 (in Chinese with English abstract).
[6] 张明伟, 杨恒山, 范秀艳, 张瑞富, 张玉芹. 浅埋滴灌下水氮减量对春玉米干物质积累及水氮利用效率的影响. 玉米科学, 2021, 29(2): 149-156.
Zhang M W, Yang H S, Fan X Y, Zhang R F, Zhang Y Q. Effect of reduction of nitrogen and irrigation on dry matter accumulation and utilization efficiency of water and nitrogen of spring maize in shallow drip irrigation. J Maize Sci, 2021, 29(2): 149-156 (in Chinese with English abstract).
[7] 杨恒山, 薛新伟, 张瑞富, 李金琴, 王宇飞, 邰继承, 刘晶. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响. 农业工程学报, 2019, 35(21): 69-77.
Yang H S, Xue X W, Zhang R F, Li J Q, Wang Y F, Tai J C, Liu J. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain. Trans CSAE, 2019, 35(21): 69-77 (in Chinese with English abstract).
[8] Gheysari M, Mirlatifi S M, Bannayan M, Homaee M, Hoogenboom G. Interaction of water and nitrogen on maize grown for silage. Agric Water Manag, 2009, 96: 809-821.
doi: 10.1016/j.agwat.2008.11.003
[9] Liang B C, Mackenzie A F. Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization. Can J Soil Sci, 1994, 74: 235-240.
doi: 10.4141/cjss94-032
[10] Joseph M, Craine. Competition for nutrients and optimal root allocation. Plant Soil, 2006, 285: 171-185.
doi: 10.1007/s11104-006-9002-x
[11] Kang S Z, Shi W J, Zhang J H. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Res, 2000, 67: 207-214.
doi: 10.1016/S0378-4290(00)00095-2
[12] Thorup-Kristensen K, Dresboll D B, Kristensen H L. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N recycling through fertility building crops. Eur J Agron, 2012, 37: 66-82.
doi: 10.1016/j.eja.2011.11.004
[13] Maeght J L, Rewald B, Pierret A. How to study deep roots—and why it matters. Front Plant Sci, 2013, 4: 299.
[14] Grant J C, Nichols D, Yao L R, Smith G, Brennan P D, Vanclay J K. Depth distribution of roots of Eucalyptus dunnii and Corymbia citriodora subsp. variegata in different soil conditions. For Ecol Manag, 2012, 269: 249-258.
doi: 10.1016/j.foreco.2011.12.033
[15] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[16] Tierney G L, Fahey T J. Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant Soil, 2001, 229: 167-176.
doi: 10.1023/A:1004829423160
[17] 陈建文, 王孟本, 史建伟. 柠条人工林幼林与成林细根动态比较研究. 生态学报, 2011, 31: 6978-6988.
Chen J W, Wang M B, Shi J W. A comparative study of the spatial-temporal patterns of fine roots between young and mature Caragana korshinskii plantations. Acta Ecol Sin, 2011, 31: 6978-6988.
[18] Taylor B N, Beidler K V, Strand A E, Pritchard S G. Improved scaling of minirhizotron data using an empirically-derived depth of field and correcting for the underestimation of root diameters. Plant Soil, 2014, 374: 941-948.
doi: 10.1007/s11104-013-1930-7
[19] Box J E, Ramsuer E L. Minirhizotron wheat root data: comparisons to soil core root data. Agron J, 1993, 85: 1058-1060.
doi: 10.2134/agronj1993.00021962008500050019x
[20] Vadez V. Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Res, 2014, 165: 15-24.
doi: 10.1016/j.fcr.2014.03.017
[21] Palta J A. Crop root system behavior and yield. Field Crops Res, 2014, 165: 1-4.
doi: 10.1016/j.fcr.2014.06.024
[22] Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil, 2003, 255: 157-167.
doi: 10.1023/A:1026123129575
[23] El-Hendawy S E, Hokam E M, Schmidhalter U. Drip irrigation frequency: the effects and their interaction with nitrogen fertilization on sandy soil water distribution, maize yield and water use efficiency under Egyptian conditions. J Agron Crop Sci, 2008, 194: 180-192.
doi: 10.1111/j.1439-037X.2008.00304.x
[24] 邹海洋, 张富仓, 张雨新, 陈东峰, 陆军胜, 郑静. 适宜滴灌施肥量促进河西春玉米根系生长提高产量. 农业工程学报, 2017, 33(21): 145-155.
Zou H Y, Zhang F C, Zhang Y X, Chen D F, Lu J S, Zheng J. Optimal drip irrigation and fertilization amount enhancing root growth and yield of spring maize in Hexi region of China. Trans CSAE, 2017, 33(21): 145-155 (in Chinese with English abstract).
[25] Pandey R K, Maraville J W, Admou A. Tropical wheat response to irrigation and nitrogen in a Sahelian environment: I.Gain yield, yield components and water use efficiency. Eur J Agron, 2001, 15: 93-105.
doi: 10.1016/S1161-0301(01)00098-3
[26] 王志刚, 王俊, 高聚林, 尹斌, 白建芳, 余少波, 梁红伟, 李雅剑. 模拟根层障碍条件下不同深度玉米根系与产量的关系研究. 玉米科学, 2015, 23(5): 61-65.
Wang Z G, Wang J, Gao J L, Yin B, Bai J F, Yu S B, Liang H W, Li Y J. Relationship of roots in different soil strata and yield of maize under simulated obstacle of root layer. J Maize Sci, 2015, 23(5): 61-65 (in Chinese with English abstract).
[27] 王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. 中国农业科学, 2013, 46: 4007-4017.
doi: 10.3864/j.issn.0578-1752.2013.19.006
Wang F F, Zhang S P, Shao L J, Li G, Chen X L, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao B. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. Sci Agric Sin, 2013, 46: 4007-4017 (in Chinese with English abstract).
[28] Hu T T, Kang S Z, Li F S, Zhang J H. Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize. Agric Water Manag, 2009, 96: 208-214.
doi: 10.1016/j.agwat.2008.07.011
[29] Diouf O, Brou Y C, Diouf M, Sarr B, Eyletters M, Roy-Macauley H, Delhaye J P. Response of pearl millet to nitrogen as affected by water deficit. Agronomie, 2004, 24: 77-84.
doi: 10.1051/agro:2004001
[30] 楚光红, 章建新, 高阳, 傅积海, 唐长青, 王娜. 施氮量对滴灌超高产春玉米根系时空分布及产量的影响. 干旱地区农业研究, 2018, 36(3): 156-160.
Chu G H, Zhang J X, Gao Y, Fu J H, Tang C Q, Wang N. Effects of nitrogen application rate on temporal and spatial distribution characteristics of super high yield spring maize root and yield under drip irrigation. Agric Res Arid Areas, 2018, 36(3): 156-160 (in Chinese with English abstract).
[31] 陆大克, 段骅, 王维维, 刘明爽, 魏艳秋, 徐国伟. 不同干湿交替灌溉与氮肥形态耦合下水稻根系生长及功能差异. 植物营养与肥料学报, 2019, 25: 1362-1372.
Lu D K, Duan H, Wang W W, Liu M S, Wei Y Q, Xu G W. Comparison of rice root development and function among different degrees of dry-wet alternative irrigation coupled with nitrogen forms. J Plant Nutr Fert, 2019, 25: 1362-1372 (in Chinese with English abstract).
[32] 马存金, 刘鹏, 赵秉强, 张善平, 冯海娟, 赵杰, 杨今胜, 董树亭, 张吉旺, 赵斌. 施氮量对不同氮效率玉米品种根系时空分布及氮素吸收的调控. 植物营养与肥料学报, 2014, 20: 845-859.
Ma C J, Liu P, Zhao B Q, Zhang S P, Feng H J, Zhao J, Yang J S, Dong S T, Zhang J W, Zhao B. Regulation of nitrogen application rate on temporal and spatial distribution of roots and nitrogen uptake in different N use efficiency maize cultivars. J Plant Nutr Fert, 2014, 20: 845-859 (in Chinese with English abstract).
[33] 谭军利, 王林权, 王西娜, 李生秀. 水肥异区交替灌溉对夏玉米生理指标的影响. 西北植物学报, 2010, 30: 344-349.
Tan J L, Wang L Q, Wang X N, Li S X. Effect of alternate irrigation with water and fertilizer in different furrows on physiological indexes of summer maize. Acta Bot Borealli-Occident Sin, 2010, 30: 344-349 (in Chinese with English abstract).
[34] Pregitzer K S, Kubiske M E, Yu C K, Hendrick R L. Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 1997, 111: 302-308.
doi: 10.1007/s004420050239 pmid: 28308123
[35] Kang S Z, Zhang J H. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot, 2004, 55: 2437-2446.
pmid: 15361526
[36] 葛选良, 杨恒山, 张雨珊, 张瑞富, 刘晶, 李维敏, 刘欣博. 浅埋滴灌下不同施氮量对玉米产量和花后氮代谢的影响. 植物营养与肥料学报, 2022, 28: 1603-1613.
Ge X L, Yang H S, Zhang Y S, Zhang R F, Liu J, Li W M, Liu X B. Effects of nitrogen application rate on maize yield and nitrogen metabolism after anthesis under shallow buried drip irrigation. J Plant Nutr Fert, 2022, 28: 1603-1613 (in Chinese with English abstract).
[1] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[2] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[3] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[4] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[5] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[6] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[7] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[8] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[9] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[10] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[11] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[12] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[13] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[14] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[15] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .