Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Effect of allelic combinations of soybean maturity loci E1/E2/E3/E4 on latitude adaptation

FANG Ran1,YUAN Li-Mei1,WANG Yu-Lin1,LU Si-Jia1,2,KONG Fan-Jiang1,2,LIU Bao-Hui1,2,*,KONG Ling-Ping1,2,*   

  1. 1 College of Life Sciences, Guangzhou University / Innovative Research Center of Molecular Genetics and Evolution, Guangzhou 510006, Guangdong, China; 2 Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou 510006, Guangdong, China
  • Received:2024-04-12 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-08-29
  • Supported by:
    This study was supported by the Youth Found of National Natural Science Foundation of China (31901569).

Abstract:

Soybean, as an important oil crop, is one of the main sources of high-quality protein and edible oil. Soybean yield and seed quality are closely related to growth-period traits, which are mainly controlled by a series of genes associated with the growth period. In this study, 16 near-isogenic lines (NILs) of E1-E4 were developed using Harosoy as the genetic background and were planted in experimental fields in Shijiazhuang and Hefei. The growth period, seed quality, and yield traits were investigated to understand the adaptability of different combinations of E1-E4 mutants to mid-latitude planting areas. The results showed that the 16 NILs had different photoperiod sensitivities and flowering times. WT and e4 NILs were unsuitable for planting in Shijiazhuang due to late flowering and low yield, while all NILs matured normally when planted in Hefei. Different allelic combinations of E1-E4 also affected plant height, node length, yield per plant, and seed quality. We found that e3 or e4 mutations could lead to early flowering under long-day conditions and simultaneously induce a shading response, resulting in taller plants and longer node lengths. We measured the protein, oil, and sucrose content of the seeds and found that the seeds of WT in NILs could not mature normally, exhibiting the lowest oil content and the highest sucrose content. Overall, seeds from the other NILs, when planted in Shijiazhuang, showed higher oil and sucrose content compared to those planted in Hefei but lower protein content. Therefore, to evaluate the latitude adaptability of soybean cultivars, it is necessary to comprehensively examine the effects of growth-period genes on photoperiod sensitivity, seed quality, and yield.

Key words: soybean, growth period, yield, seed quality, adaptability

[1] Cao D, Takeshima R, Zhao C, Liu B H, Jun A, Kong F J. Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot, 2017, 68: 1873–1884.

[2] Lin X Y, Fang C, Liu B H, Kong F J. Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. aBIOTECH, 2021, 2: 156–169.

[3] Destro D, Carpentieri-Pípolo V, Kiihl R A S, Almeida L A. Photoperiodism and genetic control of the long juvenile period in soybean: a review. Crop Breed Appl Biotechnol, 2001, 1: 72–92.

[4] Mourtzinis S, Conley S P. Delineating soybean maturity groups across the United States. Agron J, 2017, 109: 1397–1403.

[5] Jia H C, Jiang B J, Wu C X, Lu W C, Hou W S, Sun S, Yan H R, Han T F. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One, 2014, 9: e94139.

[6] Li J C, Wang X B, Song W W, Huang X Y, Zhou J, Zeng H Y , Sun S, Jia H C, Li W B, Zhou X N, Li S Z, Chen P Y, Wu C X, Guo Y, Han T F, Qiu L J. Genetic variation of maturity groups and four E genes in the Chinese soybean mini core collection. PLoS One, 2017, 12: e0172106.

[7] Yang W Y, Wu T T, Zhang X Y, Song W W, Xu C L, Sun S, Hou W S, Jiang B J, Han T F, Wu C X. Critical photoperiod measurement of soybean genotypes in different maturity groups. Crop Sci, 2019, 59: 2055–2061.

[8] Xia Z J, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lyu S X, Wu H Y, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, 109: E2155–E2164.

[9] Xu M L, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B H, Yamada T, Abe J. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol, 2015, 168: 1735–1746.

[10] Watanabe S, Xia Z J, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 395–407.

[11] Watanabe S, Hideshima R, Xia Z J, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182: 1251–1262.

[12] Liu B H, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995–1007.

[13] Cober E R. Long juvenile soybean flowering responses under very short photoperiods. Crop Sci, 2011, 51: 140–145.

[14] Cober E R, Voldeng H D. Low R: FR light quality delays flowering of E7E7 soybean lines. Crop Sci, 2001, 41: 1823–1826.

[15] Cober E R, Molnar S J, Charette M, Voldeng H D. A new locus for early maturity in soybean. Crop Sci, 2010, 50: 524–527.

[16] Kong F J, Nan H Y, Cao D, Li Y, Wu F F, Wang J L, Lu S L, Yuan X H, Cober E R, Abe J, Liu B H. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci, 2014, 54: 2529–2535.

[17] Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220–1231.

[18] Samanfar B, Molnar S J, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet, 2017, 130: 377–390.

[19] Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, Zhang L, Wang Z J, Yang Y Q, Yu D Y, Liu X L, Yang Q Y, Lin X Y, Tang Y, Zhao X H, Yang X Q, Tian C G, Xie Q G, Li X, Yuan X H, Tian Z X, Liu B H, Weller J L, Kong F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52: 428–436.

[20] 侯智红. 大豆高纬度适应性相关位点Tof5的克隆与功能研究. 黑龙江八一农垦大学博士学位论文, 黑龙江大庆, 2022.

Hou Z H. Cloning and Functional Analysis of Tof5, a Locus of Soybean Adaptated to High Latitude. PhD Dissertation of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2022 (in Chinese with English abstract).

[21] Lu S J, Zhao X H, Hu Y L, Liu S L, Nan H Y, Li X M, Fang C, Cao D, Shi X Y, Kong L P, Su T, Zhang F G, Li S C, Wang Z, Yuan X H, Cober E R, Weller J L, Liu B H, Hou X L, Tian Z X, Kong F J. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017, 49: 773–779.

[22] Lu S J, Li Y, Wang J L, Srinives P, Nan H Y, Cao D, Wang Y P, Li J L, Li X M, Fang C, Shi X Y, Yuan X H, Watanabe S, Feng X Z, Liu B H, Abe J, Kong F J. QTL mapping for flowering time in different latitude in soybean. Euphytica, 2015, 206: 725–736.

[23] Lin X Y, Dong L D, Tang Y, Li H Y, Cheng Q, Li H, Zhang T, Ma L X, Xiang H L, Chen L N, Nan H Y, Fang C, Lu S J, Li J G, Liu B H, Kong F J. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean. Proc Natl Acad Sci USA, 2022, 119: e2208708119.

[24] Li H Y, Du H P, He M L, Wang J H, Wang F, Yuan W J, Huang Z R, Cheng Q, Gou C J, Chen Z, Liu B H, Kong F J, Fang C, Zhao X H, Yu D Y. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. New Phytol, 2023, 238: 1671–1684.

[25] Dong L D, Cheng Q, Fang C, Kong L P, Yang H, Hou Z H, Li Y L, Nan H Y, Zhang Y H, Chen Q S, Zhang C B, Kou K, Su T, Wang L S, Li S C, Li H Y, Lin X Y, Tang Y, Zhao X H, Lu S J, Liu B H, Kong F J. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Mol Plant, 2022, 15: 308–321.

[26] Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229–232.

[27] Ray J D, Hinson K, Mankono J E B, Malo M F. Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35: 1001–1006.

[28] Fang C, Liu J, Zhang T, Su T, Li S C, Cheng Q, Kong L P, Li X M, Bu T T, Li H Y, Dong L D, Lu S J, Kong F J, Liu B H. A recent retrotransposon insertion of J caused E6 locus facilitating soybean adaptation into low latitude. J Integr Plant Biol, 2021, 63: 995–1003.

[29] Dong L D, Fang C, Cheng Q, Su T, Kou K, Kong L P, Zhang C B, Li H Y, Hou Z H, Zhang Y H, Chen L Y, Yue L, Wang L S, Wang K, Li Y L, Gan Z R, Yuan X H, Weller J L, Lu S J, Kong F J, Liu B H. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun, 2021, 12: 5445.

[30] Fehr W R, Caviness C E, Burmood D T, Pennington J S. Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Crop Sci, 1971, 11: 929–931.

[31] Tsubokura Y, Watanabe S, Xia Z J, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot, 2014, 113: 429–441.

[32] Krezhova D. Soybean - Genetics and Novel Techniques for Yield Enhancement. Internet: InTechOpen, 2011. pp 51–76.

[33] Xu M L, Xu Z H, Liu B H, Kong F J, Tsubokura Y, Watanabe S, Xia Z J, Harada K, Kanazawa A, Yamada T, Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol, 2013, 13: 91.

[34] Tsubokura Y, Matsumura H, Xu M L, Liu B H, Nakashima H, Anai T, Kong F J, Yuan X H, Kanamori H, Katayose Y, Takahashi R, Harada K, Abe J. Genetic variation in soybean at the maturity locus E4 Is involved in adaptation to long days at high latitudes. Agronomy, 2013, 3: 117–134.

[35] Abe J, Xu D, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y. Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci, 2003, 43: 1300–1304.

[36] Liu B H, Abe J. QTL mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J Hered, 2010, 101: 251–256.

[37] Cober E R, Tanner J W, Voldeng H D. Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Sci, 1996, 36: 601–605.

[38] Cober E R, Morrison M J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet, 2010, 120: 1005–1012.

[39] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, Pan Y, Zhou G A, Ren H X, Du W G, Yan H R, Wang Y P, Han D Z, Shen Y T, Liu S L, Liu T F, Zhang J X, Qin H, Yuan J, Yuan X H, Kong F J, Liu B H, Li J Y, Zhang Z W, Wang G D, Zhu B G, Tian Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.

[40] Wan Z, Liu Y X, Guo D D, Fan R, Liu Y, Xu K, Zhu J L, Quan L, Lu W T, Bai X, Zhai H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Front Plant Sci, 2022, 13: 1066820.

[41] Carrera C, Martínez M J, Dardanelli J, Balzarini M. Environmental variation and correlation of seed components in nontransgenic soybeans: protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci, 2011, 51: 800–809.

[42] Song W W, Yang R P, Wu T T, Wu C X, Sun S, Zhang S W, Jiang B J, Tian S Y, Liu X B, Han T F. Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. J Agric Food Chem, 2016, 64: 4121–4130.

[43] Song W W, Yang R P, Yang X S, Sun S, Mentreddy S R, Jiang B J, Wu T T, Tian S Y, Sapey E, Wu C X, Hou W S, Ren G X, Han T F. Spatial differences in soybean bioactive components across China and their influence by weather factors. Crop J, 2018, 6: 659–668.

[1] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[2] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[3] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[4] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[5] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[6] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[7] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[8] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[9] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[10] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[11] LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130.
[12] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[13] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[14] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[15] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!