Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Genome-wide identification of the TaAPC11 gene family in wheat and functional characterization of TaAPC11-5B in drought stress responses

Hu Cheng-Zhen1,2,Gao Wei-Dong1,2,Kong Bing-Xue1,3,Wang Jian-Fei1,2,Che Zhuo1,Yang De-Long1,2,*,Chen Tao1,2,*   

  1. 1 State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 3 College of Agricultural, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2025-03-13 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-08-22
  • Supported by:
    This study was supported by Breakthrough Project in Seed Industry of Gansu Province (GYGG-2024-2), Innovative Research Group Project of Gansu Province (24JRRA633), the Key Science and Technology Special Project of Gansu Province (22ZD6NA009), the National Natural Science Foundation of China (32360518, 32260520, 32160487), Key Cultivation Project of University Research and Innovation Platform of Gansu Province (2024CXPT-01), the Development Fund Project of National Guiding Local Science and Technology (23ZYQA0322), the Industrial Support Plan of Colleges and Universities in Gansu Province (2022CYZC-44), Gansu Provincial Education Department Young Doctor Support Project (2024QB-062), Open Fund for the State Key Laboratory of Crop Science in Arid Habitat Jointly Established by the Ministry of Provinces and China (GSCS-2023-07), Key Research and Development Program of Gansu Province (25YFWA020), and the Graduate Innovation Star Project 2025 by Gansu Provincial Education Department, China (2025CXZX-853).

Abstract:

The anaphase-promoting complex/cyclosome (APC/C), a multi-subunit cullin-RING-type E3 ubiquitin ligase, regulates cell cycle progression by ubiquitinating specific target proteins via its RING domain-containing subunit, APC11, thereby contributing to plant responses to abiotic stress. In this study, we performed a genome-wide identification of the TaAPC11 gene family in wheat using bioinformatics approaches, with a particular focus on elucidating the biological function of TaAPC11-5B in drought stress regulation. A total of 23 TaAPC11 members were identified in the wheat genome and classified into three subfamilies, all exhibiting conserved gene structures and motifs. Synteny analysis revealed that segmental duplications, driven by purifying selection, contributed to the expansion of the TaAPC11 family. Cis-acting element analysis indicated an abundance of abiotic stress-responsive elements in the promoters of TaAPC11 genes. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that transcripts of TaAPC11-5B, 6A2, 4D1, and 3B2 were significantly upregulated by PEG-6000 and ABA treatments, with TaAPC11-5B exhibiting the strongest response under PEG-6000-induced drought stress. Comparative analysis between wild-type (WT) and TaAPC11-5B-overexpressing rice lines (TaAPC11-5B-OE) under PEG-6000 treatment demonstrated that the overexpression lines had significantly higher survival rates, increased plant height, and a reduced leaf rolling index compared to WT plants. Physiological assays further revealed that TaAPC11-5B-OE plants exhibited lower relative electrolyte leakage and malondialdehyde (MDA) content, but higher proline accumulation under drought conditions. Moreover, DAB (3,3'-diaminobenzidine) and NBT (nitroblue tetrazolium) staining, along with antioxidant enzyme activity assays, showed that TaAPC11-5B-OE plants accumulated less hydrogen peroxide (H2O2) and superoxide anion (O2?) while displaying enhanced activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). Collectively, these results suggest that TaAPC11-5B enhances drought tolerance by modulating reactive oxygen species (ROS) scavenging. This study provides a theoretical basis and genetic resource for further understanding the drought-responsive mechanisms mediated by TaAPC11-5B in wheat.

Key words: wheat, drought stress, gene family, TaAPC11-5B, expression pattern, drought-tolerance validation

[1] Levy A A, Feldman M. Evolution and origin of bread wheat. Plant Cell, 2022, 34: 2549–2567.

[2] Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, et al. Wheat2035: integrating pan-omics and advanced biotechnology for future wheat design. Mol Plant, 2025: 272–297.

[3] Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol, 2014, 164: 354–372.

[4] Martínez-Férriz A, Ferrando A, Fathinajafabadi A, Farràs R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol, 2022, 132: 146–154.

[5] Xiong E H, Qu X L, Li J F, Liu H L, Ma H, Zhang D, Chu S S, Jiao Y Q. The soybean ubiquitin-proteasome system: current knowledge and future perspective. Plant Genome, 2023, 16: e20281.

[6] Zhang J L, Li C N, Li L, Xi Y J, Wang J Y, Mao X G, Jing R L. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014–5025.

[7] Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42: 2931–2944.

[8] Al-Saharin R, Hellmann H, Mooney S. Plant E3 ligases and their role in abiotic stress response. Cells, 2022, 11: 890.

[9] Wang R Y, You X M, Zhang C Y, Fang H, Wang M, Zhang F, Kang H X, Xu X, Liu Z, Wang J Y, et al. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol, 2022, 23: 154.

[10] Barroso-Gomila O, Merino-Cacho L, Muratore V, Perez C, Taibi V, Maspero E, Azkargorta M, Iloro I, Trulsson F, Vertegaal A C O, et al. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun, 2023, 14: 7656.

[11] de Oliveira P N, da Silva L F C, Eloy N B. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. Front Plant Sci, 2022, 13: 987919.

[12] Heyman J, De Veylder L. The anaphase-promoting complex/cyclosome in control of plant development. Mol Plant, 2012, 5: 1182–1194.

[13] Guo L, Jiang L, Zhang Y, Lu X L, Xie Q, Weijers D, Liu C M. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. Plant J, 2016, 86: 161–174.

[14] You J, Xiao W W, Zhou Y, Shen W Q, Ye L, Yu P, Yu G L, Duan Q N, Zhang X F, He Z F, et al. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice. Plant Cell, 2022, 34: 4313–4328.

[15] Lin Q B, Zhang Z, Wu F Q, Feng M, Sun Y, Chen W W, Cheng Z J, Zhang X, Ren Y L, Lei C L, et al. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell, 2020, 32: 1973–1987.

[16] Schwedersky R P, Saleme M L S, Rocha I A, Montessoro P D F, Hemerly A S, Eloy N B, Ferreira P C G. The anaphase promoting complex/cyclosome subunit 11 and its role in organ size and plant development. Front Plant Sci, 2021, 12: 563760.

[17] Xu J, Liu H J, Zhou C, Wang J X, Wang J Q, Han Y H, Zheng N, Zhang M, Li X M. The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. Plant Sci, 2024, 342: 112035.

[18] Wang J N, Zhang T Y, Tu A Z, Xie H X, Hu H C, Chen J P, Yang J. Genome-wide identification and analysis of APC E3 ubiquitin ligase genes family in Triticum aestivum. Genes (Basel), 2024, 15: 271.

[19] Bao Z L, Yang H J, Hua J. Perturbation of cell cycle regulation triggers plant immune response via activation of disease resistance genes. Proc Natl Acad Sci USA, 2013, 110: 2407–2412.

[20] 覃碧, 王肖肖, 杨玉双, 聂秋海, 陈秋惠, 刘实忠. 橡胶草TkAPC10基因的鉴定及其表达模式分析. 植物研究. 2022, 42: 830839.

Qin B, Wang X X, Yang Y S, Nie Q H, Huichen Q, Liu S Z. Identification and expression pattern analysis of TkAPC10 in Taraxacum kok-saghyz Rodin. Bull Bot Res, 2022, 42: 830–839 (in Chinese with English abstract).

[21] Zhang P P, Zhang L H, Chen T, Jing F L, Liu Y, Ma J F, Tian T, Yang D L. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899–2913.

[22] Finn R D, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R. Pfam: clans, web tools and services. Nucleic Acids Res, 2006, 34: D247–D251.

[23] Eddy S R. Accelerated profile HMM searches. PLoS Comput Biol, 2011, 7: e1002195.

[24] Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S N, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222–D226.

[25] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: D458–D460.

[26] Youn J H, Kim T W. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant, 2015, 8: 552–565.

[27] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.

[28] Xie J M, Chen Y R, Cai G J, Cai R L, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587–W592.

[29] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202.

[30] Pan X P, Zhang B H. Identification of stable reference genes for toxicogenomic and gene expression analysis. Methods Mol Biol, 2021, 2326: 67–94.

[31] Wang Y P, Li J P, Paterson A H. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics, 2013, 29: 1458–1460.

[32] Zhang Z, Li J, Zhao X Q, Wang J, Wong G K, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics, 2006, 4: 259–263.

[33] Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172–2186.

[34] Oleson A E, Sasakuma M. S1 nuclease of Aspergillus oryzae: a glycoprotein with an associated nucleotidase activity. Arch Biochem Biophys, 1980, 204: 361–370.

[35] Chen T, Miao Y P, Jing F L, Gao W D, Zhang Y Y, Zhang L, Zhang P P, Guo L J, Yang D L. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). Plant Genome, 2024, 17: e20480.

[36] Dong F Y, Liu Y D, Zhang H D, Li Y Q, Song J H, Chen S, Wang S L, Zhu Z W, Li Y, Liu Y K. TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis. BMC Plant Biol, 2025, 25: 59.

[37] 杨利, 王波, 李文姣, 王兴军, 赵术珍. 干旱胁迫下ROS的产生、清除及信号转导研究进展. 生物技术通报. 2021, 37(4): 194203.

Yang L, Wang B, Li W J, Wang X J, Zhao S Z. Research progress on production,scavenging and signal transduction of ROS under drought stress. Biotechnol Bull 2021, 37(4): 194–203 (in Chinese with English abstract).

[38] de Freitas Lima M, Eloy N B, Bottino M C, Hemerly A S, Ferreira P C G. Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep, 2013, 40: 7093–7102.

[39] Xu C, Wang Y H, Yu Y C, Duan J B, Liao Z G, Xiong G S, Meng X B, Liu G F, Qian Q, Li J Y. Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering. Nat Commun, 2012, 3: 750.

[40] Sun J Q, Huang S Y, Lu Q, Li S, Zhao S Z, Zheng X J, Zhou Q, Zhang W X, Li J, Wang L L, et al. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun, 2023, 14: 6262.

[41] Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 2017, 86: 129–157.

[42] Ma J H, Wang Y D, Tang X X, Zhao D Y, Zhang D J, Li C X, Li W, Li T, Jiang L N. TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.). Plant Cell Environ, 2023, 46: 3760–3774.

[43] Li S M, Zhang Y F, Liu Y L, Zhang P Y, Wang X M, Chen B, Ding L, Nie Y X, Li F F, Ma Z B, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605–625.

[44] Gao W D, Zhang L, Zhang Y Y, Zhang P P, Shahinnia F, Chen T, Yang D L. Genome‑wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC Plant Biol, 2024, 24: 341.

[45] He F, Wang H L, Li H G, Su Y Y, Li S, Yang Y L, Feng C H, Yin W L, Xia X L. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J, 2018, 16: 1514–1528.

[46] Wang N, Liu Y P, Cong Y H, Wang T T, Zhong X J, Yang S P, Li Y, Gai J Y. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57: 1189–1209.

[47] Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104–119.

[48] Sun C X, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 2003, 15: 2076–2092.

[49] 李淑敏. 泛素E3连接酶TaGW2调控小麦抗逆性的分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2023.

Li S M. The Molecular Mechanism of E3 Ubiqutin Ligase TaGW2 in Regulating Wheat Stress Resistance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, Chian, 2023 (in Chinese with English abstract).

[50] Qi X H, Tang X, Liu W G, Fu X, Luo H Y, Ghimire S, Zhang N, Si H J. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. Plant Physiol Biochem, 2020, 146: 438–446.

[51] Poggi G M, Corneti S, Aloisi I. The quest for reliable drought stress screening in tetraploid wheat (Triticum turgidum spp.) seedlings: why MDA quantification after treatment with 10% PEG-6000 falls short. Life (Basel), 2024, 14: 517.

[52] Kim J H, Cho A Y, Lim S D, Jang C S. Mutation of a RING E3 ligase, OsDIRH2, enhances drought tolerance in rice with low stomata density. Physiol Plant, 2024, 176: e14565.

[53] Li J J, Li Y, Yin Z G, Jiang J H, Zhang M H, Guo X, Ye Z J, Zhao Y, Xiong H Y, Zhang Z Y, et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J, 2017, 15: 183–196.

[54] Wang B X, Li L Q, Liu M L, Peng D, Wei A S, Hou B Y, Lei Y H, Li X J. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J, 2022, 112: 722–737.

[55] Du B, Nie N, Sun S F, Hu Y F, Bai Y D, He S Z, Zhao N, Liu Q C. A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Sci, 2021, 304: 110802.

[56] Yang H, Zhang Y, Lyu S W, Mao Y P, Yu F Q, Liu S, Fang Y J, Deng S L. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. J Integr Plant Biol, 2025, 67: 1274–1289.

[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[3] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[4] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[5] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[6] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[7] WANG Bin, MENG Jiang-Yu, QIU Hao-Liang, HE Ya-Jun, QIAN Wei. Identification and expression pattern analysis of the BnaDUF579 gene family in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(8): 2100-2110.
[8] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[9] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[10] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[11] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[12] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[13] YAN Zhi-Lan, ZHAO Qin, CHANG Tian-Da, WANG Yi-Ming, WANG Bi-Hui, WANG Peng, HUANG Chun-Guo, ZHANG Hui, WANG Li-Xiang, HAO Xiao-Peng, ZHAO Bo. Genome-wide identification and characterization of Alternative oxidase (AOX) genes in leguminous crops and their expression patterns in response to abiotic stresses in common bean [J]. Acta Agronomica Sinica, 2025, 51(7): 1769-1783.
[14] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[15] SHEN Ao, LIU Min, NI Di-An, LIU Wei. Promoter characterization and expression pattern analysis of the m6A methyltransferase gene SiMTA1 in foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(7): 1969-1978.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!