Hu Cheng-Zhen1,2,Gao Wei-Dong1,2,Kong Bing-Xue1,3,Wang Jian-Fei1,2,Che Zhuo1,Yang De-Long1,2,*,Chen Tao1,2,*
[1] Levy A A, Feldman M. Evolution and origin of bread wheat. Plant Cell, 2022, 34: 2549–2567. [2] Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, et al. Wheat2035: integrating pan-omics and advanced biotechnology for future wheat design. Mol Plant, 2025: 272–297. [3] Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol, 2014, 164: 354–372. [4] Martínez-Férriz A, Ferrando A, Fathinajafabadi A, Farràs R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol, 2022, 132: 146–154. [5] Xiong E H, Qu X L, Li J F, Liu H L, Ma H, Zhang D, Chu S S, Jiao Y Q. The soybean ubiquitin-proteasome system: current knowledge and future perspective. Plant Genome, 2023, 16: e20281. [6] Zhang J L, Li C N, Li L, Xi Y J, Wang J Y, Mao X G, Jing R L. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014–5025. [7] Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42: 2931–2944. [8] Al-Saharin R, Hellmann H, Mooney S. Plant E3 ligases and their role in abiotic stress response. Cells, 2022, 11: 890. [9] Wang R Y, You X M, Zhang C Y, Fang H, Wang M, Zhang F, Kang H X, Xu X, Liu Z, Wang J Y, et al. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol, 2022, 23: 154. [10] Barroso-Gomila O, Merino-Cacho L, Muratore V, Perez C, Taibi V, Maspero E, Azkargorta M, Iloro I, Trulsson F, Vertegaal A C O, et al. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun, 2023, 14: 7656. [11] de Oliveira P N, da Silva L F C, Eloy N B. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. Front Plant Sci, 2022, 13: 987919. [12] Heyman J, De Veylder L. The anaphase-promoting complex/cyclosome in control of plant development. Mol Plant, 2012, 5: 1182–1194. [13] Guo L, Jiang L, Zhang Y, Lu X L, Xie Q, Weijers D, Liu C M. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. Plant J, 2016, 86: 161–174. [14] You J, Xiao W W, Zhou Y, Shen W Q, Ye L, Yu P, Yu G L, Duan Q N, Zhang X F, He Z F, et al. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice. Plant Cell, 2022, 34: 4313–4328. [15] Lin Q B, Zhang Z, Wu F Q, Feng M, Sun Y, Chen W W, Cheng Z J, Zhang X, Ren Y L, Lei C L, et al. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell, 2020, 32: 1973–1987. [16] Schwedersky R P, Saleme M L S, Rocha I A, Montessoro P D F, Hemerly A S, Eloy N B, Ferreira P C G. The anaphase promoting complex/cyclosome subunit 11 and its role in organ size and plant development. Front Plant Sci, 2021, 12: 563760. [17] Xu J, Liu H J, Zhou C, Wang J X, Wang J Q, Han Y H, Zheng N, Zhang M, Li X M. The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. Plant Sci, 2024, 342: 112035. [18] Wang J N, Zhang T Y, Tu A Z, Xie H X, Hu H C, Chen J P, Yang J. Genome-wide identification and analysis of APC E3 ubiquitin ligase genes family in Triticum aestivum. Genes (Basel), 2024, 15: 271. [19] Bao Z L, Yang H J, Hua J. Perturbation of cell cycle regulation triggers plant immune response via activation of disease resistance genes. Proc Natl Acad Sci USA, 2013, 110: 2407–2412. [20] 覃碧, 王肖肖, 杨玉双, 聂秋海, 陈秋惠, 刘实忠. 橡胶草TkAPC10基因的鉴定及其表达模式分析. 植物研究. 2022, 42: 830–839. Qin B, Wang X X, Yang Y S, Nie Q H, Huichen Q, Liu S Z. Identification and expression pattern analysis of TkAPC10 in Taraxacum kok-saghyz Rodin. Bull Bot Res, 2022, 42: 830–839 (in Chinese with English abstract). [21] Zhang P P, Zhang L H, Chen T, Jing F L, Liu Y, Ma J F, Tian T, Yang D L. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899–2913. [22] Finn R D, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R. Pfam: clans, web tools and services. Nucleic Acids Res, 2006, 34: D247–D251. [23] Eddy S R. Accelerated profile HMM searches. PLoS Comput Biol, 2011, 7: e1002195. [24] Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S N, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222–D226. [25] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: D458–D460. [26] Youn J H, Kim T W. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant, 2015, 8: 552–565. [27] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335. [28] Xie J M, Chen Y R, Cai G J, Cai R L, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587–W592. [29] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202. [30] Pan X P, Zhang B H. Identification of stable reference genes for toxicogenomic and gene expression analysis. Methods Mol Biol, 2021, 2326: 67–94. [31] Wang Y P, Li J P, Paterson A H. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics, 2013, 29: 1458–1460. [32] Zhang Z, Li J, Zhao X Q, Wang J, Wong G K, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics, 2006, 4: 259–263. [33] Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172–2186. [34] Oleson A E, Sasakuma M. S1 nuclease of Aspergillus oryzae: a glycoprotein with an associated nucleotidase activity. Arch Biochem Biophys, 1980, 204: 361–370. [35] Chen T, Miao Y P, Jing F L, Gao W D, Zhang Y Y, Zhang L, Zhang P P, Guo L J, Yang D L. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). Plant Genome, 2024, 17: e20480. [36] Dong F Y, Liu Y D, Zhang H D, Li Y Q, Song J H, Chen S, Wang S L, Zhu Z W, Li Y, Liu Y K. TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis. BMC Plant Biol, 2025, 25: 59. [37] 杨利, 王波, 李文姣, 王兴军, 赵术珍. 干旱胁迫下ROS的产生、清除及信号转导研究进展. 生物技术通报. 2021, 37(4): 194–203. Yang L, Wang B, Li W J, Wang X J, Zhao S Z. Research progress on production,scavenging and signal transduction of ROS under drought stress. Biotechnol Bull 2021, 37(4): 194–203 (in Chinese with English abstract). [38] de Freitas Lima M, Eloy N B, Bottino M C, Hemerly A S, Ferreira P C G. Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep, 2013, 40: 7093–7102. [39] Xu C, Wang Y H, Yu Y C, Duan J B, Liao Z G, Xiong G S, Meng X B, Liu G F, Qian Q, Li J Y. Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering. Nat Commun, 2012, 3: 750. [40] Sun J Q, Huang S Y, Lu Q, Li S, Zhao S Z, Zheng X J, Zhou Q, Zhang W X, Li J, Wang L L, et al. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun, 2023, 14: 6262. [41] Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 2017, 86: 129–157. [42] Ma J H, Wang Y D, Tang X X, Zhao D Y, Zhang D J, Li C X, Li W, Li T, Jiang L N. TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.). Plant Cell Environ, 2023, 46: 3760–3774. [43] Li S M, Zhang Y F, Liu Y L, Zhang P Y, Wang X M, Chen B, Ding L, Nie Y X, Li F F, Ma Z B, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605–625. [44] Gao W D, Zhang L, Zhang Y Y, Zhang P P, Shahinnia F, Chen T, Yang D L. Genome‑wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC Plant Biol, 2024, 24: 341. [45] He F, Wang H L, Li H G, Su Y Y, Li S, Yang Y L, Feng C H, Yin W L, Xia X L. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J, 2018, 16: 1514–1528. [46] Wang N, Liu Y P, Cong Y H, Wang T T, Zhong X J, Yang S P, Li Y, Gai J Y. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57: 1189–1209. [47] Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104–119. [48] Sun C X, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 2003, 15: 2076–2092. [49] 李淑敏. 泛素E3连接酶TaGW2调控小麦抗逆性的分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2023. Li S M. The Molecular Mechanism of E3 Ubiqutin Ligase TaGW2 in Regulating Wheat Stress Resistance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, Chian, 2023 (in Chinese with English abstract). [50] Qi X H, Tang X, Liu W G, Fu X, Luo H Y, Ghimire S, Zhang N, Si H J. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. Plant Physiol Biochem, 2020, 146: 438–446. [51] Poggi G M, Corneti S, Aloisi I. The quest for reliable drought stress screening in tetraploid wheat (Triticum turgidum spp.) seedlings: why MDA quantification after treatment with 10% PEG-6000 falls short. Life (Basel), 2024, 14: 517. [52] Kim J H, Cho A Y, Lim S D, Jang C S. Mutation of a RING E3 ligase, OsDIRH2, enhances drought tolerance in rice with low stomata density. Physiol Plant, 2024, 176: e14565. [53] Li J J, Li Y, Yin Z G, Jiang J H, Zhang M H, Guo X, Ye Z J, Zhao Y, Xiong H Y, Zhang Z Y, et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J, 2017, 15: 183–196. [54] Wang B X, Li L Q, Liu M L, Peng D, Wei A S, Hou B Y, Lei Y H, Li X J. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J, 2022, 112: 722–737. [55] Du B, Nie N, Sun S F, Hu Y F, Bai Y D, He S Z, Zhao N, Liu Q C. A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Sci, 2021, 304: 110802. [56] Yang H, Zhang Y, Lyu S W, Mao Y P, Yu F Q, Liu S, Fang Y J, Deng S L. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. J Integr Plant Biol, 2025, 67: 1274–1289. |
[1] | YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219. |
[2] | ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127. |
[3] | YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203. |
[4] | SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175. |
[5] | WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189. |
[6] | GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250. |
[7] | WANG Bin, MENG Jiang-Yu, QIU Hao-Liang, HE Ya-Jun, QIAN Wei. Identification and expression pattern analysis of the BnaDUF579 gene family in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(8): 2100-2110. |
[8] | JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086. |
[9] | LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047. |
[10] | CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032. |
[11] | WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826. |
[12] | ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933. |
[13] | YAN Zhi-Lan, ZHAO Qin, CHANG Tian-Da, WANG Yi-Ming, WANG Bi-Hui, WANG Peng, HUANG Chun-Guo, ZHANG Hui, WANG Li-Xiang, HAO Xiao-Peng, ZHAO Bo. Genome-wide identification and characterization of Alternative oxidase (AOX) genes in leguminous crops and their expression patterns in response to abiotic stresses in common bean [J]. Acta Agronomica Sinica, 2025, 51(7): 1769-1783. |
[14] | WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800. |
[15] | SHEN Ao, LIU Min, NI Di-An, LIU Wei. Promoter characterization and expression pattern analysis of the m6A methyltransferase gene SiMTA1 in foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(7): 1969-1978. |
|