Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Progress and prospects in genetic breeding for Fusarium crown rot resistance in wheat

MA Jun1,2,*,CHEN Feng1,3,YIN Gui-Hong1,3,HU Hai-Yan1,4,WEI Xue-Ning5,XIE Chao-Jie1,2,KONG Ling-Rang6,*   

  1. 1 State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Beijing 100193, China; 2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 3 College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China; 4 College of Agronomy, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; 5 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 6 State Key Laboratory of Wheat Improvement / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2025-06-17 Revised:2025-07-28 Accepted:2025-07-28 Published:2025-07-29
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32472084, 32171995) and the Biological Breeding-National Science and Technology Major Project (2023ZD04025).

Abstract:

Fusarium crown rot (FCR) caused by Fusarium species is a global soil-borne disease of wheat. In recent years, this disease has rapidly spread in China and has severely threatened local wheat production. Growing disease resistant variety is an effectively approach to manage the FCR damage. However, most of the wheat varieties released in China are susceptible to FCR. The number of resistance gene identified so far remains limited. This article mainly reviews the domestic and international research progresses in several key areas for genetic breeding of FCR-resistant varieties, including inoculation methods and disease assessment, resistant germplasm screening and genetic architecture underlying FCR resistance in wheat. We proposed that to address the major challenges in the related fields, it is necessary to establish a greenhouse-field dual inoculation system, expand the scale of resistant source screening, pyramid multiple types of resistance genes and conduct nationwide joint research. This article provides useful clues for accelerating the genetic breeding of FCR-resistant varieties.

Key words: wheat, Fusarium crown rot, inoculation methods, screening for resistant germplasm, genetic analysis of resistance

[1] Kazan K, Gardiner D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects. Mol Plant Pathol, 2018, 19: 1547–1562.

[2] Beccari G, Covarelli L, Nicholson P. Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol, 2011, 60: 671–684.

[3] Gao Y T, Tian X J, Wang W D, Xu X R, Su Y Q, Yang J T, Duan S N, Li J L, Xin M M, Peng H R, et al. Changes in concentrations and transcripts of plant hormones in wheat seedling roots in response to Fusarium crown rot. Crop J, 2023, 11: 1441–1450.

[4] Smiley R W, Gourlie J A, Easley S A, Patterson L M, Whittaker R G. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis, 2005, 89: 595–604.

[5] 王宁堂, 王军利. 小麦茎基腐病的研究进展. 贵州农业科学, 2021, 49(5): 52–57.

Wang N T, Wang J L. Research progress on wheat crown rot. Guizhou Agric Sci, 2021, 49(5): 52–57 (in Chinese with English abstract).

[6] 栾冬冬, 贾吉玉, 王光州, 张俊伶. 中国小麦茎基腐病的发生现状及防治策略. 麦类作物学报, 2022, 42: 512–520.

Luan D D, Jia J Y, Wang G Z, Zhang J L. Occurrence status and control strategies of wheat crown rot in China. J Triticeae Crops, 2022, 42: 512–520 (in Chinese with English abstract).

[7] Mcknight T, Hart J. Some field observations on crown rot disease of wheat caused by Fusarium graminearum. Qld J Agric Sci, 1966, 23: 373–378.

[8] Mishra P K, Tewari J P, Clear R M, Turkington T K. Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada. Int Microbiol, 2006, 9: 65–68.

[9] Tunali B, Nicol J M, Hodson D, Uçkun Z, Büyük O, Erdurmus D, Hekimhan H, Aktas H, Akbudak M A, Bagci S A. Root and crown rot fungi associated with spring, facultative, and winter wheat in Turkey. Plant Dis, 2008, 92: 1299–1306.

[10] Castañares E, Wehrhahne L, Stenglein S A. Fusarium pseudograminearum associated with barley kernels in Argentina. Plant Dis, 2012, 96: 763.

[11] Li H L, Yuan H X, Fu B, Xing X P, Sun B J, Tang W H. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China. Plant Dis, 2012, 96: 1065.

[12] Murray G M, Brennan J P. Estimating disease losses to the Australian wheat industry. Australas Plant Pathol, 2009, 38: 558–570.

[13] 李巧云, 郭振峰, 郝晓鹏, 唐建卫, 高艳, 殷贵鸿. 小麦茎基腐病抗性鉴定方法研究进展. 麦类作物学报, 2023, 43: 591–599.

Li Q Y, Guo Z F, Hao X P, Tang J W, Gao Y, Yin G H. Advances in identification methods for resistance to wheat crown rot. J Triticeae Crops, 2023, 43: 591–599 (in Chinese with English abstract).

[14] Beccari G, Prodi A, Pisi A, Nipoti P, Onofri A, Nicholson P, Pfohl K, Karlovsky P, Gardiner D M, Covarelli L. Development of three Fusarium crown rot causal agents and systemic translocation of deoxynivalenol following stem base infection of soft wheat. Plant Pathol, 2018, 67: 1055–1065.

[15] Mudge A M, Dill-Macky R, Dong Y H, Gardiner D M, White R G, Manners J M. A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiol Mol Plant Pathol, 2006, 69: 73–85.

[16] Liu C J, Ogbonnaya F C. Resistance to Fusarium crown rot in wheat and barley: a review. Plant Breed, 2015, 134: 365–372.

[17] 周淼平, 姚金保, 张鹏, 余桂红, 马鸿翔. 小麦抗茎腐病种质筛选及鉴定新方法的建立. 植物遗传资源学报, 2016, 17: 377–382.

Zhou M P, Yao J B, Zhang P, Yu G H, Ma H X. Screening of wheat germplasm for crown rot resistance and establishment of a novel identification method. J Plant Genet Resour, 2016, 17: 377–382 (in Chinese with English abstract).

[18] Ozdemir F, Koc N K, Paulitz T, Nicol J M, Schroeder K L, Poole G. Determination of fusarium crown rot resistance in wheat to Fusarium culmorum and Fusarium pseudogramineaum using real time PCR. Crop Prot, 2020, 135:105204.

[19] Rahman M M, Davies P, Bansal U, Pasam R, Hayden M, Trethowan R. Relationship between resistance and tolerance of crown rot in bread wheat. Field Crops Res, 2021, 265:108106.

[20] Wildermuth G B. Testing wheat seedlings for resistance to crown rot caused by Fusarium graminearum Group 1. Plant Dis, 1994, 78: 949–953.

[21] Li X M, Liu C J, Chakraborty S, Manners J M, Kazan K. A simple method for the assessment of crown rot disease severity in wheat seedlings inoculated with Fusarium pseudograminearum. J Phytopathol, 2008, 156: 751–754.

[22] Wallwork H, Butt M, Cheong J P E, Williams K J. Resistance to crown rot in wheat identified through an improved method for screening adult plants. Australas Plant Pathol, 2004, 33: 1–7.

[23] Smiley R W, Yan H. Variability of Fusarium crown rot tolerances among cultivars of spring and winter wheat. Plant Dis, 2009, 93: 954–961.

[24] 杨云, 贺小伦, 胡艳峰, 侯莹, 牛亚娟, 代君丽, 袁虹霞, 李洪连. 黄淮麦区主推小麦品种对假禾谷镰孢菌所致茎基腐病的抗性. 麦类作物学报, 2015, 35: 339–345.

Yang Y, He X L, Hu Y F, Hou Y, Niu Y J, Dai J L, Yuan H X, Li H L. Resistance of major wheat cultivars in Huang-Huai wheat region to crown rot caused by Fusarium pseudograminearum. J Triticeae Crops, 2015, 35: 339–345 (in Chinese with English abstract).

[25] Kelly A, MacDonald B, Percy C, Davies P. An improved method for selection of wheat genotypes for tolerance to crown rot caused by Fusarium pseudograminearum. J Phytopathol, 2021, 169: 339–349.

[26] 张磊磊, 闫香凝, 原敏婕, 简俊涛, 韦佳杰, 李佳琦, 高梦娟, 刘璐, 李松刚, 胡鹏雨, . 小麦种质资源茎基腐病抗性鉴定及定位分析. 植物遗传资源学报. 2024, 25: 184–192.

Zhang L L, Yan X N, Yuan M J, Jian J T, Wei J J, Li J Q, Gao M J, Liu L, Li S G, Hu P Y, et al. The resistance investigation and mapping analysis of Fusarium crown rot for wheat accessions. J Plant Genet Resour, 2024, 25: 184–192 (in Chinese with English abstract).

[27] Erginbas-Orakci G, Poole G, Nicol J M, Paulitz T, Dababat A A, Campbell K. Assessment of inoculation methods to identify resistance to Fusarium crown rot in wheat. J Plant Dis Prot, 2016, 123: 19–27.

[28] Akinsanmi O A, Mitter V, Simpfendorfer S, Backhouse D, Chakraborty S. Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales. Aust J Agric Res, 2004, 55: 97.

[29] Mitter V, Zhang M C, Liu C J, Ghosh R, Ghosh M, Chakraborty S. A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathol, 2006, 55: 433–441.

[30] Li J L, Xu X R, Ma Y L, Sun Q X, Xie C J, Ma J. An improved inoculation method to detect wheat and barley genotypes for resistance to Fusarium crown rot. Plant Dis, 2022, 106: 1122–1127.

[31] Poole G J, Smiley R W, Paulitz T C, Walker C A, Carter A H, See D R, Garland-Campbell K. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US. Theor Appl Genet, 2012, 125: 91–107.

[32] Rahman M, Davies P, Bansal U, Pasam R, Hayden M, Trethowan R. Marker-assisted recurrent selection improves the crown rot resistance of bread wheat. Mol Breed, 2020, 40: 28.

[33] Purss G S. Studies of varietal resistance to crown rot of wheat caused by Fusarium graminearum Schw. Qld J Agric Anim Sci, 1966, 23: 475–498.

[34] Shi S D, Zhao J C, Pu L F, Sun D J, Han D J, Li C L, Feng X J, Fan D S, Hu X P. Identification of new sources of resistance to crown rot and Fusarium head blight in wheat. Plant Dis, 2020, 104: 1979–1985.

[35] 张鹏, 霍燕, 周淼平, 姚金保, 马鸿翔. 小麦禾谷镰孢菌茎基腐病抗源的筛选与评价. 植物遗传资源学报, 2009, 10: 431–435.

Zhang P, Huo Y, Zhou M P, Yao J B, Ma H X. Screening and evaluation of resistance sources to crown rot caused by Fusarium graminearum in wheat. J Plant Genet Resour, 2009, 10: 431–435 (in Chinese with English abstract).

[36] Wildermuth G B, Purss G S. Further sources of field resistance to crown rot (Gibberella zeae) of cereals in Queensland. Aust J Exp Agric Ani Husb, 1971, 11: 455–458.

[37] Wildermuth G B, Morgan J M. Genotypic differences in partial resistance to crown rot caused by Fusarium pseudograminearum in relation to an osmoregulation gene in wheat. Australas Plant Pathol, 2004, 33: 121–123.

[38] 吴玉星, 韩森, 王亚娇, 张巧丽, 高建海, 栗秋生, 孔令晓. 河北省小麦主栽品种对茎基腐病抗性鉴定及评价指标相关性分析. 植物保护, 2023, 49: 267–271.

Wu Y X, Han S, Wang Y J, Zhang Q L, Gao J H, Li Q S, Kong L X. Resistance identification of major wheat cultivars in Hebei province to crown rot and correlation analysis of evaluation indicators. Plant Prot, 2023, 49: 267–271 (in Chinese with English abstract).

[39] Liu C J, Ma J, Li H B, Liu Y X, Liu G R, Wen S M, Zhou M X, Yan G J, Chakraborty S. The homoeologous regions on long arms of group 3 chromosomes in wheat and barley harbour major crown rot resistance loci. Czech J Genet Plant Breed, 2011, 47: S109–S114.

[40] Yang X, Pan Y B, Singh P K, He X Y, Ren Y, Zhao L, Zhang N, Cheng S H, Chen F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol, 2019, 19: 153.

[41] 金京京, 齐永志, 王丽, 王芳芳, 闫翠梅, 李保云, 解超杰, 甄文超, 马骏. 小麦种质对茎基腐病抗性评价及优异种质筛选. 植物遗传资源学报, 2020, 21: 308–313.

Jin J J, Qi Y Z, Wang L, Wang F F, Yan C M, Li B Y, Xie C J, Zhen W C, Ma J. Evaluation of resistance to crown rot and screening of elite germplasm in wheat. J Plant Genet Resour, 2020, 21: 308–313 (in Chinese with English abstract).

[42] 徐飞, 李淑芳, 石瑞杰, 王俊美, 刘继红, 周益林, 宋玉立, 赵国建, 张姣姣, 李亚红. 黄淮麦区主栽小麦品种抗茎基腐病评价及茎秆和籽粒中毒素积累分析. 植物病理学报. 2021, 51: 912–920.

Xu F, Li S F, Shi R J, Wang J M, Liu J H, Zhou Y L, Song Y L, Zhao G J, Zhang J J, Li Y H. Evaluation of resistances to Fusarium crown rot caused by Fusarium pseudograminearum in commercial wheat cultivars of Huang-huai wheat growing region and toxin accumulation in stems and kernels. Acta Phytopathol Sin, 2021, 51: 912–920 (in Chinese with English abstract).

[43] 中华人民共和国农业农村部.农业农村部办公厅关于印发《小麦茎基腐病防控技术指导意见》的通知(农办农[2023]31). https://www.moa.gov.cn/nybgb/2023/202310/202311/t20231101_6439584.htm.

Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of General Office of the Ministry of Agriculture and Rural Affairs on Printing and Distributing “the Technical Guidelines for the Prevention and Control of Wheat Crown Rot” (Agriculture Office of Agriculture [2023] No. 31). https://www.moa.gov.cn/nybgb/2023/202310/202311/t20231101_6439584.htm (in Chinese).

[44] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.

[45] Li Q Y, Hao X P, Guo Z F, Qu K F, Gao M S, Song G L, Yin Z, Yuan Y H, Dong C H, Niu J S, et al. Screening and resistance locus identification of the mutant fcrZ22 resistant to crown rot caused by Fusarium pseudograminearum. Plant Dis, 2024, 108: 426–433.

[46] Xu X R, Su Y Q, Yang J T, Li J L, Gao Y T, Li C, Wang X Y, Gou L L, Zheng Z, Xie C J, et al. A novel QTL conferring Fusarium crown rot resistance on chromosome 2A in a wheat EMS mutant. Theor Appl Genet, 2024, 137: 49.

[47] Tong J Y, Zhao C, Liu D, Jambuthenne D T, Sun M J, Dinglasan E, Periyannan S K, Hickey L T, Hayes B. Genome-wide atlas of rust resistance loci in wheat. Theor Appl Genet, 2024, 137:179.

[48] Bovill W D, Horne M, Herde D, Davis M, Wildermuth G B, Sutherland M W. Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum). Theor Appl Genet, 2010, 121: 127–136.

[49] Collard B C Y, Jolley R, Bovill W D, Grams R A, Wildermuth G B, Sutherland M W. Confirmation of QTL mapping and marker validation for partial seedling resistance to crown rot in wheat line ‘2–49’. Aust J Agric Res, 2006, 57: 967–973.

[50] Zheng Z, Kilian A, Yan G J, Liu C J. QTL conferring Fusarium crown rot resistance in the elite bread wheat variety EGA Wylie. PLoS One, 2014, 9: e96011.

[51] Yang X M, Ma J, Li H B, Ma H X, Yao J B, Liu C J. Different genes can be responsible for crown rot resistance at different developmental stages of wheat and barley. Eur J Plant Pathol, 2010, 128: 495–502.

[52] Martin A, Bovill W D, Percy C D, Herde D, Fletcher S, Kelly A, Neate S M, Sutherland M W. Markers for seedling and adult plant crown rot resistance in four partially resistant bread wheat sources. Theor Appl Genet, 2015, 128: 377–385.

[53] Zheng Z, Powell J, Gao S, Percy C, Kelly A, MacDonald B, Zhou M X, Davies P, Liu C J. Investigation of two QTL conferring seedling resistance to Fusarium crown rot in barley on reducing grain yield loss under field environments. Agronomy, 2022, 12:1282.

[54] Hou S, Lin Y, Yu S F, Yan N, Chen H, Shi H R, Li C X, Wang Z Q, Liu Y X. Genome-wide association analysis of Fusarium crown rot resistance in Chinese wheat landraces. Theor Appl Genet, 2023, 136:101.

[55] Collard B C Y, Grams R A, Bovill W D, Percy C D, Jolley R, Lehmensiek A, Wildermuth G, Sutherland M W. Development of molecular markers for crown rot resistance in wheat: mapping of QTLs for seedling resistance in a “2-49” × “Janz” population. Plant Breed, 2005, 124: 532–537.

[56] 郭灿, 程敦公, 齐军山, 刘晓晗, 刘海琛, 刘秀坤, 陈志伟, 单宝雪, 肖彦军, 张玉梅, . 普通小麦苗期茎基腐病抗性QTL定位. 山东农业科学, 2022, 54(7): 1–7.

Guo C, Cheng D G, Qi J S, Liu X H, Liu H C, Liu X K, Chen Z W, Shan B X, Xiao Y J, Zhang Y M, et al. QTL mapping for resistance to Fusarium crown rot in common wheat at seedling stage. Shandong Agric Sci, 2022, 54(7): 1–7 (in Chinese with English abstract).

[57] Jin J J, Duan S N, Qi Y Z, Yan S H, Li W, Li B Y, Xie C J, Zhen W C, Ma J. Identification of a novel genomic region associated with resistance to Fusarium crown rot in wheat. Theor Appl Genet, 2020, 133: 2063–2073.

[58] Su Y Q, Xu X R, Wang Y Q, Wang T Z, Yu J Z, Yang J T, Li J L, Gao Y T, Wang Y X, Sang W, et al. Identification of genetic loci and candidate genes underlying Fusarium crown rot resistance in wheat. Theor Appl Genet, 2025, 138: 23.

[59] Bovill W D, Ma W, Ritter K, Collard B C Y, Davis M, Wildermuth G B, Sutherland M W. Identification of novel QTL for resistance to crown rot in the doubled haploid wheat population “W21MMT70” × “Mendos”. Plant Breed, 2006, 125: 538–543.

[60] Lyu G, Zhang Y X, Ma L, Yan X N, Yuan M J, Chen J H, Cheng Y Z, Yang X, Qiao Q, Zhang L L, et al. A cell wall invertase modulates resistance to Fusarium crown rot and sharp eyespot in common wheat. J Integr Plant Biol, 2023, 65: 1814–1825.

[61] 周淼平, 张鹏, 杨学明, 陈达, 姚金保. 小麦茎基腐病抗性QTL的分析. 麦类作物学报, 2021, 41: 538–543.

Zhou M P, Zhang P, Yang X M, Chen D, Yao J B. Analysis of QTLs for the resistance to crown root in wheat. J Triticeae Crops, 2021, 41: 538–543 (in Chinese with English abstract).

[62] Pariyar S R, Erginbas-Orakci G, Dadshani S, Chijioke O B, Léon J, Dababat A A, Grundler F M W. Dissecting the genetic complexity of Fusarium crown rot resistance in wheat. Sci Rep, 2020, 10: 3200.

[63] Erginbas-Orakci G, Sehgal D, Sohail Q, Ogbonnaya F, Dreisigacker S, Pariyar S R, Dababat A A. Identification of novel quantitative trait loci linked to crown rot resistance in spring wheat. Int J Mol Sci, 2018, 19: 2666.

[64] Malosetti M, Zwep L B, Forrest K, van Eeuwijk F A, Dieters M. Lessons from a GWAS study of a wheat pre-breeding program: pyramiding resistance alleles to Fusarium crown rot. Theor Appl Genet, 2021, 134: 897–908.

[65] Ma J, Zhang C Y, Liu Y X, Yan G J, Liu C J. Enhancing Fusarium crown rot resistance of durum wheat by introgressing chromosome segments from hexaploid wheat. Euphytica, 2012, 186: 67–73.

[66] 蒲乐凡, 任慧, 欧杨晨, 任慧莉, 曾庆东, 胡小平, 李春莲, 韩德俊. 小麦茎基腐病和赤霉病抗源筛选及关联SNP位点分析. 麦类作物学报, 2020, 40: 780–788.

Pu L F, Ren H, Ou Y C, Ren H L, Zeng Q D, Hu X P, Li C L, Han D J. Screening of germplasms resistant to crown rot and Fusarium head blight and the associated SNPs in wheat. J Triticeae Crops, 2020, 40: 780–788 (in Chinese with English abstract).

[67] Ma J, Li H B, Zhang C Y, Yang X M, Liu Y X, Yan G J, Liu C J. Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor Appl Genet, 2010, 120: 1119–1128.

[68] Xiong F, Zhu X L, Luo C S, Liu Z X, Zhang Z Y. The cytosolic acetoacetyl-CoA thiolase TaAACT1 is required for defense against Fusarium pseudograminearum in wheat. Int J Mol Sci, 2023, 24: 6165.

[69] Yang X, Zhong S B, Zhang Q J, Ren Y, Sun C W, Chen F. A loss-of-function of the dirigent gene TaDIR-B1 improves resistance to Fusarium crown rot in wheat. Plant Biotechnol J, 2021, 19: 866–868.

[70] Zheng Z, Gao S, Zhou M X, Yan G J, Liu C J. Enhancing Fusarium crown rot resistance by pyramiding large-effect QTL in common wheat (Triticum aestivum L.). Mol Breed, 2017, 37:107.

[71] Su J, Zhao J J, Zhao S Q, Li M Y, Pang S Y, Kang Z S, Zhen W C, Chen S S, Chen F, Wang X D. Genetics of resistance to common root rot (spot blotch), Fusarium crown rot, and sharp eyespot in wheat. Front Genet, 2021, 12: 699342.

[72] Bai Z Y, Liu C J. Histological evidence for different spread of Fusarium crown rot in barley genotypes with different heights. J Phytopathol, 2015, 163: 91–97.

[73] Chen G D, Yan W, Liu Y X, Wei Y M, Zhou M X, Zheng Y L, Manners J M, Liu C J. The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley. BMC Plant Biol, 2014, 14: 22.

[74] Keyes G J, Paolillo D J, Sorrells M E. The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat. Ann Bot, 1989, 64: 683–690.

[75] Liu Y X, Yang X M, Ma J, Wei Y M, Zheng Y L, Ma H X, Yao J B, Yan G J, Wang Y G, Manners J M, et al. Plant height affects Fusarium crown rot severity in wheat. Phytopathology, 2010, 100: 1276–1281.

[76] Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer M M. Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2005, 111: 325–336.

[77] Czembor P C, Arseniuk E, Radecka-Janusik M, Piechota U, Słowacki P. Quantitative trait loci analysis of adult plant resistance to Parastagonospora nodorum blotch in winter wheat cv. Liwilla (Triticum aestivum L.). Eur J Plant Pathol, 2019, 155: 1001–1016.

[78] Rivera-Burgos L A, Brown-Guedira G, Johnson J, Mergoum M, Cowger C. Accounting for heading date gene effects allows detection of small-effect QTL associated with resistance to Septoria nodorum blotch in wheat. PLoS One, 2022, 17: e0268546.

[79] Qi H J, Zhu X L, Shen W B, Yang X, Zhang C Z, Li G Y, Chen F, Wei X N, Zhang Z Y. TaRLK-6A promotes Fusarium crown rot resistance in wheat. J Integr Plant Biol, 2024, 66: 12–16.

[80] Li J L, Zhang C Z, Xu X R, Su Y Q, Gao Y T, Yang J T, Xie C J, Ma J. A MYB family transcription factor TdRCA1 from wild emmer wheat regulates anthocyanin biosynthesis in coleoptile. Theor Appl Genet, 2024, 137: 208.

[81] Qi H J, Guo F L, Lv L J, Zhu X L, Zhang L, Yu J F, Wei X N, Zhang Z Y. The wheat wall-associated receptor-like kinase TaWAK-6D mediates broad resistance to two fungal pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. Front Plant Sci, 2021, 12: 758196.

[82] Wu T C, Guo F L, Xu G B, Yu J F, Zhang L, Wei X N, Zhu X L, Zhang Z Y. The receptor-like kinase TaCRK-7A inhibits Fusarium pseudograminearum growth and mediates resistance to Fusarium crown rot in wheat. Biology, 2021, 10:1122.

16: 2549.

[84] Hua L, Song R, Hao X H, Zhang J, Liu Y N, Luo J, Ren X P, Li H N, Wang G P, Rehman S U, et al. Manipulation of the brown glume and internode 1 gene leads to alterations in the colouration of lignified tissues, lignin content and pathogen resistance in wheat. Plant Biotechnol J, 2025, 23: 1548–1564.

[85] Xu X, Yu T F, Wei J T, Ma X F, Liu Y W, Zhang J P, Zheng L, Hou Z H, Chen J, Zhou Y B, et al. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat. Plant J, 2024, 120:1764–1785.

[86] Li M Y, Zhao S Q, Yang J Y, Ren Y, Su J, Zhao J J, Ren X P, Wang C Y, Chen S S, Yu X M, et al. Exogenous expression of barley HvWRKY6 in wheat improves broad-spectrum resistance to leaf rust, Fusarium crown rot, and sharp eyespot. Int J Biol Macromol, 2022, 218: 1002–1012.

[87] Mandalà G, Tundo S, Francesconi S, Gevi F, Zolla L, Ceoloni C, D’Ovidio R. Deoxynivalenol detoxification in transgenic wheat confers resistance to Fusarium head blight and crown rot diseases. Mol Plant Microbe Interact, 2019, 32: 583–592.

[88] Zhang N, Tang L, Li S G, Liu L, Gao M J, Wang S S, Chen D Y, Zhao Y C, Zheng R Q, Soleymaniniya A, et al. Integration of multi-omics data accelerates molecular analysis of common wheat traits. Nat Commun, 2025, 16: 2200.

al. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). Ann Bot, 2017, 119: 853–867.

[90] Jin J J, Duan S N, Qi Y Z, Zhen W C, Ma J. Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis. J Integr Agric, 2021, 20: 3209–3221.

[91] Qiao F F, Yang X W, Xu F D, Huang Y, Zhang J M, Song M, Zhou S M, Zhang M, He D X. TMT-based quantitative proteomic analysis reveals defense mechanism of wheat against the crown rot pathogen Fusarium pseudograminearum. BMC Plant Biol, 2021, 21: 82.

[92] Duan S N, Jin J J, Gao Y T, Jin C L, Mu J Y, Zhen W C, Sun Q X, Xie C J, Ma J. Integrated transcriptome and metabolite profiling highlights the role of benzoxazinoids in wheat resistance against Fusarium crown rot. Crop J, 2022, 10: 407–417.

[93] Su Z Y, Gao S, Zheng Z, Stiller J, Hu S W, McNeil M D, Shabala S, Zhou M X, Liu C J. Transcriptomic insights into shared responses to Fusarium crown rot infection and drought stresses in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2024, 137: 34.

[94] Ma J, Du G, Li X, Zhang C, Guo J. A major locus controlling malondialdehyde content under water stress is associated with Fusarium crown rot resistance in wheat. Mol Genet Genomics, 2015, 290: 1955–1962.

[95] Ma Z Q, Xie Q, Li G Q, Jia H Y, Zhou J Y, Kong Z X, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet, 2020, 133: 1541–1568.

[96] Xing L P, Hu P, Liu J Q, Witek K, Zhou S, Xu J F, Zhou W H, Gao L, Huang Z P, Zhang R Qet al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant, 2018, 11: 874–878.

[97] He H G, Zhu S Y, Zhao R H, Jiang Z N, Ji Y Y, Ji J, Qiu D, Li H J, Bie T D. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant, 2018, 11: 879–882.

[98] Guo X R, Shi Q H, Liu Y, Su H D, Zhang J, Wang M, Wang C H, Wang J, Zhang K B, Fu S L, et al. Systemic development of wheat-Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. Plant J, 2023, 114: 1475–1489.

[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-Analysis of stripe rust resistance-associated traits and candidate gene identification in Wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[3] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed N application optimizes interspecific interactions and enhances N use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[4] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU, Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[5] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[6] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[7] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[8] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[9] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[10] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[11] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[12] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[13] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[14] LYU Guo-Feng, FAN Jin-Ping, WU Su-Lan, ZHANG Xiao, ZHAO Ren-Hui, LI Man, WANG Ling, GAO De-Rong, BIE Tong-De, LIU Jian. Genetic analysis of key target traits in the early-maturing wheat cultivar Yangmai 37 [J]. Acta Agronomica Sinica, 2025, 51(6): 1538-1547.
[15] WU Mei-Juan, ZHANG Yin-Hui, LI Yuan-Hao, LIU Hai-Xia, HUANG Yi-Lin, LI Tian, LIU Hong-Xia, ZHANG Xue-Yong, HAO Chen-Yang, GUO Jie, HOU Jian. Functional dissection of sucrose synthase gene TaSUS2 regulating grain starch synthesis and quality in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1514-1525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!