Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Differences in oil and sucrose content of peanuts in ecological regions at different altitudes and association study of sucrose content

GUO Jian-Bin1,YUAN Xiao-Yan2,FU Ming-Lian2,CHEN Wei-Gang1,LUO Huai-Yong1,LIU Nian1,HUANG Li1,ZHOU Xiao-Jing1,JIANG Hui-Fang1,LIAO Bo-Shou1,LEI Yong1,*   

  1. 1 Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China; 2 Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2025-03-18 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-14
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD1200201), the National Program for Crop Germplasm Protection of China (19210163), the Project of the Development for High-quality Seed Industry of Hubei Province (HBZY2023B00305), and the China Agriculture Research System of MOF and MARA (CARS-13-Germplasm Resource Evaluation).

Abstract:

Oil content and sucrose content are the most important quality traits for oil-use and edible peanuts, respectively. Cultivating peanuts in high-altitude, cooler regions is an important strategy to expand planting areas and enhance production capacity. To investigate the effects of altitude on peanut oil and sucrose contents, a total of 404 peanut germplasms were planted in Wuhan and Kunming over two consecutive years, and their oil and sucrose contents were measured. The results showed that peanuts grown in high-altitude regions had decreased oil content and increased sucrose content, with the increase in sucrose being much greater than the reduction in oil. Comparative analysis revealed that no accessions with high sucrose content (>5%) were found in the Wuhan environment, while only three accessions showed stable and high oil content across both altitudes, indicating their potential as elite parents for breeding oil-use varieties adapted to high-altitude regions. The effects of altitude on oil and sucrose contents varied among accessions with different botanical types and seed sizes, with large-seeded accessions being more sensitive to altitude-related ecological factors than small-seeded ones. Additionally, an association study for sucrose content identified four significant SSR markers, explaining 5.85%–7.68% of the phenotypic variation, located on chromosomes B01, B05, A09, and B09. Notably, when compared with our previous oil content association study, the marker pPGPseq8D9, significantly associated with oil content, was also located on chromosome A09, though at a different position 10.45 Mb for sucrose and 119.60 Mb for oil. These findings highlight that altitude significantly affects key quality traits such as oil and sucrose content. Therefore, the influence of high-altitude ecological conditions on peanut quality should be carefully considered in production. The substantial increase in sucrose content makes high-altitude regions favorable for developing edible peanut varieties, whereas the development of oil-use varieties in such regions should prioritize selecting genotypes with stable and high oil content to mitigate the negative impact of altitude.

Key words: peanut, altitude, oil content, sucrose content, association study

[1] 廖伯寿. 深化花生抗性聚合改良支撑产业绿色高效发展. 民主与科学, 2024, (5): 1012.
Liao B S. Deepen the green and efficient development of peanut resistance polymerization improvement support industry. Democracy & Science, 2024, (5): 10–12 (in Chinese).

[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161166. 
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161166 (in Chinese with English abstract).

[3] 汤松. 我国花生发展概况、存在的问题及措施建议. 花生学报, 2003, 32(增刊1): 1623.
Tang S. General situation, existing problems and suggestions of peanut development in China. J Peanut Sci, 2003, 32(S1): 16–23 (in Chinese). 

[4] 郭洪海, 杨萍, 杨丽萍, 李新华, 万书波, 符明联. 云贵高原花生生产与品质特征. 中国农学通报, 2011, 27(3): 221225.
Guo H H, Yang P, Yang L P, Li X H, Wan S B, Fu M L. The characteristics of production and quality of peanut in Yungui Plateau. Chin Agric Sci Bull, 2011, 27(3): 221–225 (in Chinese with English abstract).

[5] 傅抱璞, 虞静明, 卢其尧.山地气候资源与开发利用. 南京: 南京大学出版社, 1996. pp 165179.
Fu B P, Yu J M, Lu Q Y. Mountain Climate Resources and Development and Utilization. Nanjing: Nanjing University Press, 1996. pp 165–179 (in Chinese).

[6] 潘红丽, 李迈和, 蔡小虎, 吴杰, 杜忠, 刘兴良. 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 2009, 18: 722730.
Pan H L, Li M H, Cai X H, Wu J, Du Z, Liu X L. Responses of growth and ecophsiology of plants to altitude. Eco Environi Sci, 2009, 18: 722–730 (in Chinese with English abstract).

[7] 王玉娇. 海拔条件和施氮量对小麦产量及品质的影响. 新疆农业大学硕士学位论文, 乌鲁木齐, 2021.
Wang Y J. Effects of Altitude Conditions and Nitrogen Application Rate on Wheat Yield and Quality. MS Thesis of Xijiang Agricultural University, Urumqi, Xinjiang, China, 2021 (in Chinese with English abstract).

[8] Bertin P, Busocoro J P, Tilquin J P, Kinet J M, Bouharmont J. Field evaluation and selection of rice somaclonal variants at different altitudes. Plant Breed, 2010, 115: 183188.

[9] 陈学君, 曹广才, 贾银锁, 吴东兵, 陈婧, 于亚雄, 李唯, 李杰. 玉米生育期的海拔效应研究. 中国生态农业学报, 2009, 17: 527–532.
Chen X J, Cao G C, Jia Y S, Wu D B, Chen J, Yu Y X, Li W, Li J. Influence of elevation on growth duration of maize (Zea mays L.). Chin J Eco-Agric, 2009, 17: 527–532 (in Chinese with English abstract).

[10] 谭亚玲, 洪汝科, 陈金凤, 张忠林, 谭学林. 海拔高度对不同水稻品种生长的影响研究. 种子, 2009, 28(7): 2730.
Tan Y L, Hong R K, Chen J F, Zhang Z L, Tan X L. Effects of altitude on growth of different rice varieties. Seed, 2009, 28(7): 27–30 (in Chinese with English abstract).

[11] 张晓春, 石有明, 尹学伟, 周燕, 黄华磊, 高志宏, 钟巍然. 不同海拔高度间甘蓝型油菜产量和品质的差异. 西南农业学报, 2012, 25: 20002004.
Zhang X C, Shi Y M, Yin X W, Zhou Y, Huang H L, Gao Z H, Zhong W R. Study on yield and quality of rapeseed (Brassica napus L.) in different altitude. Southwest China J Agric Sci, 2012, 25: 2000–2004 (in Chinese with English abstract).

[12] 李春喜, 冯海生, 闫慧颖, 裴剑民, 李永仁. 不同海拔生态区甜高粱和玉米及甜高粱不同刈割次数的养分含量. 草地学报, 2016, 24: 425432.
Li C X, Feng H S, Yan H Y, Pei J M, Li Y R. Nutrient content of sweet sorghum and corns in different altitude regions and sweet sorghum in different clipping frequency. Acta Agrestia Sin, 2016, 24: 425–432 (in Chinese with English abstract).

[13] 刘淑云, 董树亭, 胡昌浩. 不同海拔高度对玉米品质性状影响的研究. 玉米科学, 2005, 13(2): 6871.
Liu S Y, Dong S T, Hu C H. The study of latitude and altitude affecting to maize quality. J Maize Sci, 2005, 13(2): 68-71 (in Chinese with English abstract).

[14] 李静, 袁继超, 蔡光泽. 海拔对水稻产量和品质的影响研究进展. 中国农学通报, 2013, 29(24): 14.
Li J, Yuan J C, Cai G Z. Advances in the research of elevation on rice yield and quality. Chin Agric Sci Bull, 2013, 29(24): 1–4 (in Chinese with English abstract).

[15] Liu N, Huang L, Chen W G, Wu B, Pandey M K, Luo H Y, Zhou X J, Guo J B, Chen H W, Huai D X, et al. Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet, 2020, 21: 60.

[16] Pattee H E, Isleib T G, Giesbrecht F G, McFeeters R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000, 48: 757–763.

[17] 陈娜, 程果, 潘丽娟, 陈明娜, 张小燕, 王冕, 王通, 许静, 禹山林, 孙泓希, . 东北地区收获期低温对花生品质影响及耐低温品种选. 植物生理学报, 2020, 56: 24172427.
Chen N, Cheng G, Pan L J, Chen M N, Zhang X Y, Wang M, Wang T, Xu J, Yu S L, Sun H X, et al.  Effect of low temperature on peanut quality and screening of low temperature tolerant varieties in Northeast China. Plant Physiol J, 2020, 56: 2417–2427 (in Chinese with English abstract).

[18] 周倩, 梅乐, 刘亚萍. 海拔和收获期对小京生花生还原糖含量的影响. 浙江农业科学, 2020, 61(2): 266267.
Zhou Q, Mei L, Liu Y P. Effects of altitude and harvest period on reducing sugar content of Xiaojingsheng peanut. J Zhejiang Agric Sci, 2020, 61(2): 266–267 (in Chinese with English abstract).

[19] 郭建斌, 李威涛, 丁膺宾, 徐思亮, 淮东欣, 刘念, 陈伟刚, 黄莉, 罗怀勇, 周小静, . 花生籽仁不同发育时期不同部位主要营养成分变化. 中国油料作物学报, 2020, 42: 10511057.
Guo J B, Li W T, Ding Y B, Xu S L, Huai D X, Liu N, Chen W G, Huang L, Luo H Y, Zhou X J, et al. Variation of nutritional components in different developmental stages and different parts of seeds in peanut. Chin J Oil Crop Sci, 2020, 42: 1051–1057 (in Chinese with English abstract).

[20] Song Y Y, Rowland D L, Tillman B L, Wilson C H, Sarnoski P J, Zurweller B A. Impact of seed maturity on season-long physiological performance and offspring seed quality in peanut (Arachis hypogaea L.). Field Crop Res, 2022, 288: 108674.

[21] Guo J J, Qi F Y, Qin L, Zhang M N, Sun Z Q, Li H Y, Cui M J, Zhang M Y, Li C Y, Li X N, et al. Mapping of a QTL associated with sucrose content in peanut kernels using BSA-seq. Front Genet, 2023, 13: 1089389.

[22] Li W T, Huang L, Liu N, Chen Y N, Guo J B, Yu B L, Luo H Y, Zhou X J, Huai D X, Chen W G, et al. Identification of a stable major sucrose-related QTL and diagnostic marker for flavor improvement in peanut. Theor Appl Genet, 2023, 136: 78.

[23] Wang F F, Miao H R, Zhang S Z, Hu X H, Li C J, Chu Y, Chen C, Zhong W, Zhang T Y, Wang H, et al. Identification of a major QTL underlying sugar content in peanut kernels based on the RIL mapping population. Front Plant Sci, 2024, 15: 1423586.

[24] Huai D X, Zhi C Y, Wu J, Xue X M, Hu M L, Zhang J N, Liu N, Huang L, Yan L Y, Wang X, et al. Unveiling the molecular regulatory mechanisms underlying sucrose accumulation and oil reduction in peanut kernels through genetic mapping and transcriptome analysis. Plant Physiol Bioch, 2024, 208: 108448.

[1] ZHAO Chao-Nan, WANG Jin-Feng, ZHANG Yu, ZHANG Li, LI Rui-Qi, WANG Peng-Fei, LI Ge-Zi, ZHANG Hong-Jun, YU Bo, KANG Guo-Zhang. Genome-wide association study for the identification and characterization of nitrogen efficiency-related genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1801-1813.
[2] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[3] GUO Teng-Da, CUI Meng-Jie, CHEN Lin-Jie, HAN Suo-Yi, GUO Jing-Kun, WU Chen-Di, FU Liu-Yang, HUANG Bing-Yan, DONG Wen-Zhao, ZHANG Xin-You. Cloning and expression analysis of the phosphatidylinositol transfer protein AhSFH gene in peanuts responsive to Aspergillus flavus infection [J]. Acta Agronomica Sinica, 2025, 51(6): 1489-1500.
[4] LIANG Hong-Kai, ZHAO Su-Meng, LU Qiong, ZHOU Peng, ZHI Hui, DIAO Xian-Min, HE Qiang. A mini-core collection of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(6): 1435-1444.
[5] LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408.
[6] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[7] CHI Xiao-Yuan, BI Jing-Nan, ZHAO Jian-Xin, CHEN Na, PAN Li-Juan, JIANG Xiao, YIN Xiang-Zhen, ZHAO Xu-Hong, MA Jun-Qing, XU Jing. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm [J]. Acta Agronomica Sinica, 2025, 51(4): 943-957.
[8] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895.
[9] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[10] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[11] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[12] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[13] MA Min-Hu, CHANG Hua-Yu, CHEN Zhao-Yan, REN Zeng, LIU Ting-Hui, XING Guo-Fang, GUO Gang-Gang. Identification and genome-wide association study of specialized seedling grass barley cultivars [J]. Acta Agronomica Sinica, 2025, 51(1): 91-102.
[14] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[15] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!