Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 202-220.doi: 10.3724/SP.J.1006.2026.51059

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen fertilizer reduction and topdressing methods on wheat yield, nitrogen use efficiency, and N2O emissions in wheat fields

Shi Lyu1(), Shi Xiao-Xu1, Han Xiao1, Shan Hai-Yong1, Liu Xu-Jie1, Zhang Jin1, Yan Yi-Ni1, Li Ying1, Liu Hai-Cui1, Wei Ya-Feng1, Yang Mei-Ying1, Xue Ya-Guang1,*(), Liu Jian1, Zhang Zu-Jian2,*()   

  1. 1Jiangsu Yanjiang Institute of Agricultural Sciences / Key Laboratory of Recycling Agriculture of Nantong City, Nantong 226012, Jiangsu, China
    2College of Agriculture, Yangzhou University / Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2025-06-13 Accepted:2025-09-10 Online:2026-01-12 Published:2025-09-24
  • Contact: *E-mail: 171240816@qq.com; E-mail: zzj@yzu.edu.cn
  • Supported by:
    Nantong City Social Livelihood Project(MSZ2023068);Special Funds for Scientific and Technological Innovation of Jiangsu Province, China(BE2022425);Jiangsu Provincial Science and Technology Project(BE2020388)

Abstract:

To elucidate the mechanisms underlying yield enhancement, efficiency improvement, and emission mitigation in rice-stubble wheat under the integrated “one basal plus one topdressing” mechanized deep fertilization strategy, a field experiment was conducted from 2021 to 2024 within a rice-wheat rotation system in Nantong, located in the lower Yangtze River Basin. The study employed a slow-release blended fertilizer (SRF, N∶P2O5∶K2O = 26∶12∶12) and conventional urea (U, 46% N), utilizing two self-developed machines: the 2BFGK-12(6)260 full-straw-stubble field clean-zone rotary-till intelligent fertilizer applicator and seeder, and the 3ZF-4(200) cultivator-topdresser. Seven fertilization regimes were established under a 30 cm + 15 cm wide-narrow row planting system. The control (CK) received four split applications of urea (N 240 kg hm-2; basal : tillering : jointing : booting = 5∶1∶2∶2, with basal application in narrow rows and topdressing broadcast across the field). Six reduced-N treatments (N 204 kg hm-2, a 15% reduction) were applied: M1 (100% SRF, narrow-row basal); M2 (60% SRF, narrow-row basal + 40% U, narrow-row broadcast at jointing); M3 (60% SRF, narrow-row basal + 40% U, wide-row banding at regreening); M4 (60% SRF, narrow-row basal + 40% SRF, narrow-row broadcast at regreening); M5 (60% SRF, narrow-row basal + 40% SRF, wide-row banding at regreening); and M4+5 (60% SRF, narrow-row basal + 20% SRF, wide-row banding + 20% SRF, narrow-row broadcast at regreening). The effects of these fertilization regimes on wheat yield performance, economic benefit, root morphological and physiological traits, nitrogen use efficiency (NUE), and N2O emissions were systematically evaluated. Compared with CK, treatments M2-M5 increased wheat yield by 4.0%-19.0% and economic returns by 13.7%-35.7%, with M4 and M5 showing optimal performance (yield increases of 14.1% and 19.0%; economic gains of 34.5% and 35.7%, respectively). These treatments significantly improved root traits, with root weight density increasing by 9.7%-111.8% and enhancements in root activity and oxidation capacity of 6.8%-52.0% and 4.2%-44.2%, respectively. Cumulative N2O emissions were reduced by 22.6%-34.5%, and soil NO3--N content in the 0-20 cm layer increased by 11.2%-40.0%. In terms of nitrogen utilization, M2-M5 treatments promoted grain N accumulation, post-anthesis N uptake, and its contribution to grain N content. Indicators of nitrogen use efficiency—including partial factor productivity, agronomic efficiency, and apparent recovery efficiency—increased significantly by 22.4%-40.0%, 29.7%-74.3%, and 9.41-18.77 percentage points, respectively. Notably, M4 and M5 achieved the most comprehensive benefits, with the greatest reductions in cumulative N2O emissions (27.0% and 34.5%) and consistently high apparent N recovery efficiency across two growing seasons (mean values of 43.5% and 46.8%), along with sustained root activity and topsoil inorganic N content during late growth stages. In contrast, M1 achieved the highest N2O mitigation (35.9%) but resulted in a 10.4% yield loss and 10.8% reduction in economic benefit, with unstable interannual variation in NUE. The optimized M4+5 treatment further enhanced root morphological and physiological traits while improving apparent N recovery efficiency and grain N accumulation. In summary, under a 15% nitrogen reduction (N 204 kg hm-2), split-application treatments using slow-release blended fertilizer (M4 and M5) achieved synergistic improvements in yield, economic return, nitrogen use efficiency, and N2O emission reduction, with the deep banding topdressing strategy (M5) delivering the most pronounced benefits. These findings provide strong theoretical support for the optimized and efficient use of slow-release fertilizers in nitrogen-reduced rice-wheat rotation systems.

Key words: strip tillage, nitrogen reduction, topdressing method, yield, nitrogen utilization, N2O emission

Table 1

Soil characteristics at the beginning of the three growing season experiments"

生长季
Growing season
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkaline nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium (mg kg-1)
pH
2021-2022 22.62 1.11 114.84 34.99 86.67 7.62
2022-2023 24.45 1.16 128.81 57.94 91.67 7.86
2023-2024 24.51 1.20 123.50 45.52 101.71 7.76

Fig. 1

Daily average, maximum and minimum air temperature, and daily precipitation during the wheat growing seasons from 2021 to 2024"

Table 2

Nitrogen fertilizer management and application scheme"

年份
Year
模式
Pattern
施肥方式
Fertilization
methods
施氮量
Nitrogen application rate
(kg hm-2)
追肥方式
Topdressing way
施氮量Nitrogen application rate (kg hm-2)
播种期
Seeding
stage
分蘖期Tillering stage 返青期Regreening stage 拔节期Jointing stage 孕穗期Booting stage
2021-
2023
0N 0
CK 100% U 240 全田撒施
Whole field spreading
120.0 U 24.0 U 48.0 U 48.0 U
M1 100% SRF 204 204.0 SRF
M2 60% SRF+40% U 204 窄行撒施
Narrow row spreading
122.4 SRF 81.6 U
M3 60% SRF+40% U 204 宽行条施
Wide row striping
122.4 SRF 81.6 U
M4 60% SRF+40% SRF 204 窄行撒施
Narrow row spreading
122.4 SRF 81.6 SRF
M5 60% SRF+40% SRF 204 宽行条施
Wide row striping
122.4 SRF 81.6 SRF
2023-
2024
0N 0
M4 60% SRF+40% SRF 204 窄行撒施
Narrow row spreading
122.4 SRF 81.6 SRF
M5 60% SRF+40% SRF 204 宽行条施
Wide row striping
122.4 SRF 81.6 SRF
M4+5 60% SRF+40% SRF 204 1/2窄行撒施, 1/2宽行条施
Spreading half in narrow row, striping half in wide row
122.4 SRF 81.6 SRF

Fig. 2

2BFGK-12(6)260 full-straw-stubble field clean-zone rotary-till intelligent fertilizer applicator and seeder (left) and 3ZF-4 (200) cultivator-topdresser (right)"

Fig. 3

Sampling positions for root coring"

Table 3

Grain yield and yield components of wheat under different topdressing modes"

年份
Year
处理
Treatment
籽粒产量
Grain yield
(kg hm-2)
增产率
Yield-increasing rate (%)
穗数
Spike number per area
(×104 hm-2)
每穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
2021-2022 0N 4363.46 f -38.9 336.31 e 29.75 d 47.88 a
CK 7139.50 d 517.06 cd 32.65 bcd 44.35 cd
M1 6394.98 e -10.4 499.28 d 30.92 cd 43.64 d
M2 7468.18 c 4.6 518.54 cd 33.76 abc 44.38 cd
M3 8011.79 b 12.2 537.80 bc 34.12 ab 44.62 c
M4 8183.66 b 14.6 552.62 ab 34.65 ab 45.84 b
M5 8551.82 a 19.8 570.40 a 36.16 a 46.42 b
2022-2023 0N 4260.27 e -40.1 312.61 e 28.29 c 49.57 a
CK 7109.67 c 499.28 cd 31.37 bc 46.12 cd
M1 6369.76 d -10.4 484.47 d 29.92 bc 44.72 d
M2 7356.39 c 3.5 493.36 d 32.51 ab 46.47 cd
M3 7864.09 b 10.6 512.62 bc 33.72 ab 46.83 c
M4 8076.93 ab 13.6 522.99 b 33.57 ab 47.37 bc
M5 8405.74 a 18.2 540.77 a 35.84 a 49.01 ab
F-value 年份Year (Y) 2.54NS 49.44** 3.17NS 53.00**
处理Treatment (T) 317.09** 299.72** 10.94** 21.65**
Y × T 0.10NS 0.40NS 0.09NS 0.54NS
2023-2024 0N 5233.29 b -38.7 310.68 b 28.61 c 47.34 a
M4 8174.31 a -4.3 524.64 a 34.10 b 46.39 a
M5 8381.01 a -1.9 532.33 a 34.64 ab 47.11 a
M4+5 8541.02 a 546.18 a 35.98 a 47.48 a
F-value 处理Treatment (T) 78.35** 138.67** 68.29** 1.68NS

Table 4

Output value and net income of wheat under different topdressing modes"

年份
Year
处理
Treatment
产值
Output value
(Yuan hm-2)
投入
Input value
(Yuan hm-2)
投入减少率
Input reduction rate (%)
净收益
Net income
(Yuan hm-2)
净收益增加率
Net income growth rate (%)
产投比
Output/input value
2021-2022 0N 10,908.66 f 6540.60 21.6 4368.06 e -54.0 1.67 e
CK 17,848.74 d 8347.12 9501.62 c 2.14 d
M1 15,987.45 e 7513.62 10.0 8473.83 d -10.8 2.13 d
M2 18,670.44 c 7735.63 7.3 10,934.82 b 15.1 2.41 c
M3 20,029.48 b 8485.63 -1.7 11,543.85 b 21.5 2.36 c
M4 20,459.15 b 7663.62 8.2 12,795.53 a 34.7 2.67 a
M5 21,379.56 a 8413.62 -0.8 12,965.94 a 36.5 2.54 b
2022-2023 0N 10,224.66 e 6500.10 21.7 3724.56 e -57.5 1.57 e
CK 17,063.20 c 8306.62 8756.59 c 2.05 d
M1 15,287.43 d 7473.12 10.0 7814.31 d -10.8 2.05 d
M2 17,655.34 c 7695.13 7.4 9960.21 b 13.7 2.29 c
M3 18,873.81 b 8445.13 -1.7 10,428.68 b 19.1 2.23 c
M4 19,384.63 ab 7623.12 8.2 11,761.52 a 34.3 2.54 a
M5 20,173.77 a 8373.12 -0.8 11,800.66 a 34.8 2.41 b
F-value 年份Year (Y) 41.26** 37.82** 35.13**
处理Treatment (T) 317.86** 222.88** 172.53**
Y × T 0.32NS 0.32NS 0.22NS
2023-2024 0N 12,559.89 b 6525.60 23.7 6034.29 b -49.5 1.92 b
M4 19,618.35 a 7648.62 10.5 11,969.74 a 0.2 2.56 a
M5 20,114.41 a 8398.62 1.8 11,715.80 a -2.0 2.39 a
M4+5 20,498.46 a 8548.62 11,949.84 a 2.40 a
F-value 处理Treatment (T) 78.35** 47.00** 25.81**

Fig. 4

Differences in root weight density (a, b, c), root activity (d, e, f), and root oxidation activity (g, h, i) of wheat under different topdressing modes Treatments are the same as those given in Table 2. Different lowercase letters indicate significant differences among treatments within the same year at P < 0.05. TTC: 2,3,5-triphenyltetrazolium chloride."

Fig. 5

Dynamics of N2O emission flux under different topdressing modes Treatments are the same as those given in Table 2. The solid and dashed arrows indicate the basal fertilization and topdressing, respectively."

Fig. 6

Variations in cumulative N2O emission, N2O emission factor (a), and N2O emission intensity (b) under different topdressing modes Treatments are the same as those given in Table 2. Different lowercase letters indicate significant differences among treatments for the same indicator and year at P < 0.05. CE and EF represent the cumulative N2O emission and N2O emission factor, respectively."

Fig. 7

Variations in soil nitrate (a), ammonium (b), and mineral nitrogen (c) content under different topdressing modes at the maturity stage Treatments are the same as those given in Table 2. Different lowercase letters indicate significant differences among treatments within the same soil layer at P < 0.05."

Table 5

Comparison of nitrogen accumulation and translocation in wheat under different topdressing modes"

年份
Year
处理
Treatment
营养器官氮素积累量
N accumulation amount in vegetative organs
(kg hm-2)
籽粒氮素
积累量
N accumulation amount
in grains
(kg hm-2)
花后氮素
转运量Post-anthesis N translocation amount
(kg hm-2)
花后氮素
转运率Post-anthesis N translocation rate
(%)
花后转运氮素对籽粒氮素贡献率Contribution rate of post-anthesis translocated N to grain N (%) 花后氮素
积累量Post-anthesis N accumulation amount
(kg hm-2)
花后积累氮素对籽粒氮素贡献率
Contribution rate of post-anthesis accumulated N to grain N (%)
开花期
Anthesis
成熟期
Maturity
2021-2022 0N 75.51 c 13.34 f 78.71 e 62.17 c 82.3 ab 79.0 a 16.54 e 21.0 d
CK 129.72 a 22.66 d 134.50 d 107.06 a 82.5 ab 79.6 a 27.45 d 20.4 d
M1 121.44 b 20.15 e 129.65 d 101.29 ab 83.4 a 78.2 a 28.36 d 21.8 d
M2 132.65 a 24.95 c 143.31 c 107.71 a 81.2 b 75.2 ab 35.60 cd 24.8 cd
M3 132.45 a 27.23 b 150.53 b 105.22 ab 79.4 c 69.9 bc 45.31 bc 30.1 bc
M4 126.97 ab 27.83 b 153.30 ab 99.14 b 78.0 cd 64.7 cd 54.17 ab 35.3 ab
M5 128.71 a 29.28 a 159.14 a 99.43 b 77.2 d 62.5 d 59.71 a 37.5 a
2022-2023 0N 71.99 c 12.76 f 73.05 f 59.23 e 82.2 ab 81.1 a 13.82 f 18.9 d
CK 126.77 a 21.26 d 133.90 d 105.51 a 83.2 a 79.2 ab 28.39 de 20.8 cd
M1 117.37 b 19.52 e 122.47 e 97.85 bcd 83.4 a 79.9 a 24.62 e 20.1 d
M2 126.52 a 22.19 d 140.12 cd 104.33 ab 82.4 a 74.5 ab 35.79 cd 25.5 cd
M3 127.67 a 24.56 c 143.65 bc 103.12 abc 80.7 b 71.8 bc 40.53 bc 28.2 bc
M4 123.75 ab 27.15 b 147.18 ab 96.60 cd 78.1 c 65.7 cd 50.58 ab 34.3 ab
M5 120.90 ab 28.85 a 151.47 a 92.06 d 76.1 d 60.8 d 59.41 a 39.2 a
F-value 年份
Year (Y)
13.57** 49.35** 18.94** 6.60* 1.05NS 0.18NS 1.07NS 0.18NS
处理
Treatment (T)
146.57** 483.59** 278.00** 86.95** 47.54** 18.44** 36.94** 18.44**
Y × T 0.28NS 4.21** 0.62NS 0.31NS 1.38NS 0.19NS 0.19NS 0.19NS
2023-2024 0N 105.13 b 19.56 b 111.18 c 85.57 b 81.4 a 77.0 a 25.61 c 23.0 c
M4 162.24 a 31.56 a 191.37 b 130.68 a 80.5 b 68.3 b 60.69 b 31.7 b
M5 159.02 a 32.97 a 194.42 b 126.06 a 79.3 c 64.8 bc 68.36 ab 35.2 ab
M4+5 156.84 a 34.00 a 202.97 a 122.83 a 78.3 d 60.5 c 80.14 a 39.5 a
F-value 处理
Treatment (T)
32.43** 89.75** 311.73** 25.84** 42.29** 10.84** 39.38** 10.84**

Fig. 8

Variations in nitrogen partial factor productivity (a), nitrogen agronomic efficiency (b), and apparent recovery efficiency of applied nitrogen (c) under different topdressing modes Treatments are the same as those given in Table 2. Different lowercase letters indicate significant differences among treatments within the same year at P < 0.05."

[1] Ma Q, Qian Y S, Yu Q Q, et al. Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agric Ecosyst Environ, 2023, 349: 108445.
doi: 10.1016/j.agee.2023.108445
[2] Duan J Z, Shao Y H, He L, et al. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci Total Environ, 2019, 697: 134088.
doi: 10.1016/j.scitotenv.2019.134088
[3] Hodge A, Robinson D, Fitter A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci, 2000, 5: 304-308.
doi: 10.1016/s1360-1385(00)01656-3 pmid: 10871903
[4] Selbie D R, Buckthought L E, Shepherd M A. Chapter four: the challenge of the urine patch for managing nitrogen in grazed pasture systems. Adv Agron, 2015, 129: 229-292.
[5] 宁运旺, 张辉, 戴娟, 等. 江苏省小麦化肥投入现状与影响因素分析——以苏州市和盐城市为例. 江苏农业科学, 2019, 47(15): 269-273.
Ning Y W, Zhang H, Dai J, et al. Present situation and influencing factors of wheat fertilizer input in Jiangsu province: taking Suzhou city and Yancheng city as examples. Jiangsu Agric Sci, 2019, 47(15): 269-273 (in Chinese with English abstract).
[6] Liu C R, Ren D Y, Liu H R, et al. Optimizing nitrogen management diminished reactive nitrogen loss and acquired optimal net ecosystem economic benefit in a wheat-maize rotation system. J Clean Prod, 2022, 331: 129964.
doi: 10.1016/j.jclepro.2021.129964
[7] Ma Q, Wang M Y, Zheng G L, et al. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Res, 2021, 267: 108163.
doi: 10.1016/j.fcr.2021.108163
[8] Ma Q, Tao R R, Jia W X, et al. Split application of polymer-coated urea combined with common urea improved nitrogen efficiency without sacrificing wheat yield and benefits while saving 20% nitrogen input. Front Plant Sci, 2024, 15: 1321900.
doi: 10.3389/fpls.2024.1321900
[9] 马泉. 稻茬小麦缓释氮肥两次分施调控产量形成和氮效率的形态生理机制. 扬州大学博士学位论文, 江苏扬州, 2023.
Ma Q. Morphological and Physiological Mechanism of Slow-Release Nitrogen Fertilizer Twice-split Application Regulating Yield Formation and Nitrogen Efficiency in Rice Stubble Wheat. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[10] Ma Q, Tao R R, Ding Y G, et al. Can split application of slow-release fertilizer improve wheat yield, nitrogen efficiency and their stability in different ecological regions? Agronomy, 2022, 12: 407.
doi: 10.3390/agronomy12020407
[11] 杜同庆, 徐鹏, 李振宏. 不同时期追施缓混肥料对稻茬麦生长特征及产量的影响. 耕作与栽培, 2023, 43(1): 60-63.
Du T Q, Xu P, Li Z H. Effects of topdressing slow-mixing fertilizer at different stages on growth characteristics and yield of wheat following rice. Tillage Cult, 2023, 43(1): 60-63 (in Chinese with English abstract).
[12] 盛海君, 马泉, 蒋昕, 等. 硫包衣缓释掺混肥料施用模式对江苏不同生态区稻茬小麦产量、氮效率与经济效益的影响. 中国土壤与肥料, 2022(10): 118-127.
Sheng H J, Ma Q, Jiang X, et al. Effects of sulfur coated blended fertilizer application patterns on yield, nitrogen efficiency and economic benefits of winter wheat following rice in different ecological regions of Jiangsu province. Soil Fert Sci China, 2022(10): 118-127 (in Chinese with English abstract).
[13] 马泉, 蒋文月, 张新钵, 等. 硫包膜缓释肥运筹方式对强筋小麦氮素积累转运、产量和品质的影响. 中国土壤与肥料, 2022(8): 148-157.
Ma Q, Jiang W Y, Zhang X B, et al. Effect of sulfur coated slow-released fertilizer managements on nitrogen accumulation and translocation, yield and quality of strong gluten wheat. Soil Fert Sci China, 2022(8): 148-157 (in Chinese with English abstract).
[14] Li G H, Gu R, Xu K, et al. Split application of a mixture of controlled-release and common urea for improving quality and agronomic and economic performance in wheat production. Crop Sci, 2021, 61: 4402-4415.
doi: 10.1002/csc2.v61.6
[15] 马元喜. 小麦的根. 北京: 中国农业出版社, 1999.
Ma Y X. The Root System of Wheat. Beijing: China Agriculture Press, 1999 (in Chinese).
[16] 郝伯为, 赵玉娟. 返青期断根对冬小麦光合特性与产量的影响. 湖北农业科学, 2015, 54: 795-797.
Hao B W, Zhao Y J. Effects of reviving root-cutting on photosynthetic characteristics and yield of winter wheat. Hubei Agric Sci, 2015, 54: 795-797 (in Chinese with English abstract).
[17] 封涌涛, 路国艳, 胡昌录, 等. 返青期断根对秸秆覆盖冬小麦产量及叶片光合特性的影响. 麦类作物学报, 2021, 41: 738-744.
Feng Y T, Lu G Y, Hu C L, et al. Effect of spring root pruning on yield and flag leaf photosynthetic characteristics of winter wheat under straw mulching. J Triticeae Crops, 2021, 41: 738-744 (in Chinese with English abstract).
[18] 冯慧敏, 高娜娜, 孟志军, 等. 基于自动导航的小麦精准对行深施追肥机设计与试验. 农业机械学报, 2018, 49(4): 60-67.
Feng H M, Gao N N, Meng Z J, et al. Design and experiment of deep fertilizer applicator based on autonomous navigation for precise row-following. Trans CSAM, 2018, 49(4): 60-67 (in Chinese with English abstract).
[19] 孙晓然, 孙绿, 赵长星, 等. 追肥深度对旱地小麦花后旗叶衰老特性及产量的影响. 华北农学报, 2015, 30(增刊1): 420-424.
Sun X R, Sun L, Zhao C X, et al. Effects of fertilization application depth on senescence characteristics of flag leaf after anthesis and yield of dry-land wheat. Acta Agric Boreali-Sin, 2015, 30(S1): 420-424 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2015.S1.076
[20] 韩笑, 张晋, 石吕, 等. 稻秸行间集覆宽窄行播种技术下小麦经济效益和碳效率分析. 大麦与谷类科学, 2023, 40(2): 62-67.
Han X, Zhang J, Shi L, et al. Analysis of the economic benefits and carbon efficiency of wheat production using the technology of centralizing rice straw to cover wide rows and sowing in narrow rows. Barley Cereal Sci, 2023, 40(2): 62-67 (in Chinese with English abstract).
[21] 吕金岭, 高燕哺, 李太魁, 等. 施氮量对砂姜黑土小麦-玉米轮作体系N2O排放的影响. 中国生态农业学报(中英文), 2021, 29: 1846-1856.
Lyu J L, Gao Y B, Li T K, et al. Effect of nitrogen fertilizer amount on N2O emission from wheat-maize rotation system in lime concretion black soil. Chin J Eco-Agric, 2021, 29: 1846-1856 (in Chinese with English abstract).
[22] Chen H, Zhou J, Li B, et al. Yield-scaled N2O emissions as affected by nitrification inhibitor and overdose fertilization under an intensively managed vegetable field: a three-year field study. Atmos Environ, 2019, 206: 247-257.
doi: 10.1016/j.atmosenv.2019.02.036
[23] 杜嘉琪, 张紫薇, 王若飞, 等. 有机肥替代化肥与丛枝菌根真菌互作对砂姜黑土和潮土N2O排放的影响. 中国农业科学, 2025, 58: 101-116.
doi: 10.3864/j.issn.0578-1752.2025.01.008
Du J Q, Zhang Z W, Wang R F, et al. The interactive effects of organic fertilizer substituting chemical fertilizers and arbuscular mycorrhizal fungi on soil nitrous oxide emission in Shajiang black soil and fluvo-aquic soil. Sci Agric Sin, 2025, 58: 101-116 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2025.01.008
[24] 李小方, 张志良. 植物生理学实验指导(第5版). 北京: 高等教育出版社, 2016.
Li X F, Zhang Z L. Experimental Guidance of Plant Physiology, 5th edn. Beijing: Higher Education Press, 2016 (in Chinese).
[25] 段文学, 于振文, 张永丽, 等. 施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响. 中国农业科学, 2012, 45: 3040-3048.
doi: 10.3864/j.issn.0578-1752.2012.15.004
Duan W X, Yu Z W, Zhang Y L, et al. Effects of nitrogen fertilizer application rate on nitrogen absorption, translocation and nitrate nitrogen content in soil of dryland wheat. Sci Agric Sin, 2012, 45: 3040-3048 (in Chinese with English abstract).
[26] 丁锦峰, 徐东忆, 丁永刚, 等. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响. 中国农业科学, 2023, 56: 619-634.
doi: 10.3864/j.issn.0578-1752.2023.04.003
Ding J F, Xu D Y, Ding Y G, et al. Effects of cultivation patterns on grain yield, nitrogen uptake and utilization, and population quality of wheat under rice-wheat rotation. Sci Agric Sin, 2023, 56: 619-634 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.04.003
[27] 谭德水, 刘兆辉. 一次性施肥技术实现三大粮食作物轻简化绿色生产. 中国农业科学, 2018, 51: 3823-3826.
doi: 10.3864/j.issn.0578-1752.2018.20.001
Tan D S, Liu Z H. One-off fertilization technology realized light-simplified and green production for the three major grain crops. Sci Agric Sin, 2018, 51: 3823-3826 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.20.001
[28] 王火焰, 周健民. 根区施肥——提高肥料养分利用率和减少面源污染的关键和必需措施. 土壤, 2013, 45: 785-790.
Wang H Y, Zhou J M. Root-zone Fertilization: a key and necessary approach to improve fertilizer use efficiency and reduce non-point source pollution from the cropland. Soils, 2013, 45: 785-790 (in Chinese with English abstract).
[29] 马泉, 王梦尧, 孙全, 等. 硫包膜尿素施用模式对稻茬冬小麦产量、氮肥利用率和效益的影响. 核农学报, 2021, 35: 942-952.
doi: 10.11869/j.issn.100-8551.2021.04.0942
Ma Q, Wang M Y, Sun Q, et al. Effects of application modes of sulfur coated urea on yield, nitrogen use efficiency and benefit of winter wheat following rice. J Nucl Agric Sci, 2021, 35: 942-952 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2021.04.0942
[30] 董庆玲, 娄焕昌, 张慧, 等. 普通和控释尿素配合深施提高冬小麦花期旗叶光合性能与氮素利用效率. 植物营养与肥料学报, 2019, 25: 1134-1145.
Dong Q L, Lou H C, Zhang H, et al. Improving photosynthetic efficiency of flag leaves at anthesis stage and nitrogen utilization of winter wheat by deep placement of common and control- released urea mixture. J Plant Nutr Fert, 2019, 25: 1134-1145 (in Chinese with English abstract).
[31] 肖治林, 王琛, 张瑛, 等. 控释氮肥施用策略对稻茬小麦产量和氮肥吸收利用的影响. 麦类作物学报, 2024, 44: 472-484.
Xiao Z L, Wang C, Zhang Y, et al. Effect of controlled-released nitrogen fertilizer application strategy on yield and nitrogen uptake and utilization of wheat following rice stubble. J Triticeae Crops, 2024, 44: 472-484 (in Chinese with English abstract).
[32] 王应君, 王淑珍, 郑义. 肥料深施对小麦生育性状、养分吸收及产量的影响. 中国农学通报, 2006, 22(9): 276-280.
Wang Y J, Wang S Z, Zheng Y. Effects of deep application of fertilizer on growth character, absorption of nutrition and yield in wheat. Chin Agric Sci Bull, 2006, 22(9): 276-280 (in Chinese with English abstract).
[33] 高凤菊, 吕金岭. 尿素追肥深施对小麦产量及氮肥利用率的影响. 耕作与栽培, 2006(1): 28.
Gao F J, Lyu J L. Effects of deep application of urea as topdressing on wheat yield and nitrogen use efficiency. Tillage Cult, 2006(1): 28 (in Chinese with English abstract).
[34] 田中伟, 樊永惠, 殷美, 等. 长江中下游小麦品种根系改良特征及其与产量的关系. 作物学报, 2015, 41: 613-622.
doi: 10.3724/SP.J.1006.2015.00613
Tian Z W, Fan Y H, Yin M, et al. Genetic improvement of root growth and its relationship with grain yield of wheat cultivars in the middle-lower Yangtze River. Acta Agron Sin, 2015, 41: 613-622 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00613
[35] 杨兰芳, 蔡祖聪. 施氮和玉米生长对土壤氧化亚氮排放的影响. 应用生态学报, 2005, 16: 100-104.
Yang L F, Cai Z C. Effects of N application and maize growth on N2O emission from soil. Chin J Appl Ecol, 2005, 16: 100-104 (in Chinese with English abstract).
[36] 马二登, 马静, 徐华, 等. 稻秆还田方式对麦田N2O排放的影响. 土壤, 2007, 39: 870-873.
Ma E D, Ma J, Xu H, et al. Effects of rice straw returning methods on N2O emissions from wheat-growing season. Soils, 2007, 39: 870-873 (in Chinese with English abstract).
[37] Wu P, Wu Q, Huang H, et al. Global meta-analysis and three-year field experiment shows that deep placement of fertilizer can enhance crop productivity and decrease gaseous nitrogen losses. Field Crops Res, 2024, 307: 109263.
doi: 10.1016/j.fcr.2024.109263
[38] 徐钰, 刘兆辉, 朱国梁, 等. 不同农业管理措施对华北地区麦田温室气体排放的影响. 中国土壤与肥料, 2016(2): 7-13.
Xu Y, Liu Z H, Zhu G L, et al. Effects of greenhouse gas emission under different agricultural management practices in wheat field in the North China Plain. Soil Fert Sci China, 2016(2): 7-13 (in Chinese with English abstract).
[39] 侯朋福, 薛利祥, 袁文胜, 等. 缓控释肥深施对黏性土壤麦田氮素去向的影响. 环境科学, 2023, 44: 473-481.
Hou P F, Xue L X, Yuan W S, et al. Effect of deep fertilization with slow/controlled release fertilizer on N fate in clayey soil wheat field. Environ Sci, 2023, 44: 473-481 (in Chinese with English abstract).
[40] 卞文新, 马晓晓, 孙东旭, 等. 包膜氮肥一次性减量施用对冬小麦产量和氮素利用的影响. 植物营养与肥料学报, 2022, 28: 1840-1851.
Bian W X, Ma X X, Sun D X, et al. Effects of coated nitrogen fertilizer under one-time reduced application on yield and nitrogen use efficiency of winter wheat. J Plant Nutr Fert, 2022, 28: 1840-1851 (in Chinese with English abstract).
[41] Shakoor A, Xu Y L, Wang Q, et al. Effects of fertilizer application schemes and soil environmental factors on nitrous oxide emission fluxes in a rice-wheat cropping system, East China. PLoS One, 2018, 13: e0202016.
[42] Ju X T, Liu X J, Pan J R, et al. Fate of 15N-labeled urea under a winter wheat-summer maize rotation on the North China Plain. Pedosphere, 2007, 17: 52-61.
doi: 10.1016/S1002-0160(07)60007-1
[43] Wu H J, Macdonald G K, Galloway J N, et al. The influence of crop and chemical fertilizer combinations on greenhouse gas emissions: a partial life-cycle assessment of fertilizer production and use in China. Resour Conserv Recycl, 2021, 168: 105303.
doi: 10.1016/j.resconrec.2020.105303
[44] 张传红, 韩露, 谢佳男, 等. 江苏省主要农作物碳足迹动态及其构成研究. 南京信息工程大学学报(自然科学版), 2022, 14: 110-119.
Zhang C H, Han L, Xie J N, et al. Carbon footprint dynamics and composition assessment of major crops production in Jiangsu province. J Nanjing Univ Inf Sci Technol (Nat Sci Edn), 2022, 14: 110-119 (in Chinese with English abstract).
[45] 王兴来, 赵玉蝶, 苗淑杰, 等. 基于生命周期的江苏省稻麦周年轮作碳足迹的南北差异分析. 生态与农村环境学报, 网络首发[2025-02-20], https://doi.org/10.19741/j.issn.1673-4831.2024.0908.
Wang X L, Zhao Y D, Miao S J, et al. Analysis of north-south differences in the carbon footprint of rice-wheat annual rotation in Jiangsu Province based on life cycle assessment. J Ecol Rural Environ, Published online [2025-02-20], https://doi.org/10.19741/j.issn.1673-4831.2024.0908 (in Chinese with English abstract).
[46] Ma Y Z, Qiao Y F, Tang Y J, et al. Estimation of N2O and CH4 emissions in field study and DNDC model under optimal nitrogen level in rice-wheat rotation system. Sci Total Environ, 2025, 974: 179168.
doi: 10.1016/j.scitotenv.2025.179168
[47] 李欣欣, 石祖梁, 王久臣, 等. 稻茬冬小麦氮肥吸收、残留和损失特性. 应用生态学报, 2020, 31: 3691-3699.
doi: 10.13287/j.1001-9332.202011.021
Li X X, Shi Z L, Wang J C, et al. Characteristics of uptake, residual and loss of nitrogen fertilizer in winter wheat after rice stubble. Chin J Appl Ecol, 2020, 31: 3691-3699 (in Chinese with English abstract).
[48] Zhang Y J, Ren W C, Zhu K Y, et al. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: a global meta-analysis. Field Crops Res, 2024, 306: 109221.
doi: 10.1016/j.fcr.2023.109221
[49] 冯爱青, 张民, 李成亮, 等. 控释氮肥对土壤酶活性与土壤养分利用的影响. 水土保持学报, 2014, 28(3): 177-184.
Feng A Q, Zhang M, Li C L, et al. Effects of controlled release nitrogen fertilizer on soil enzyme activities and soil nutrient utilization. J Soil Water Conserv, 2014, 28(3): 177-184 (in Chinese with English abstract).
[1] Ma Ting-Ting, Guo Xiao-Jiang, Li Hao, Deng Mei, Pu Zhi-En, Li Wei, Zhang Ya-Zhou, Wang Feng-Tao, Cui Feng-Juan, Wei Yu-Ming, Wang Ji-Rui, Jiang Yun-Feng, Chen Guo-Yue. Breeding strategy for synergistic improvement of yield, disease resistance, and stress tolerance in Shumai 753 using the wheat landrace Xiaoganmai [J]. Acta Agronomica Sinica, 2026, 52(1): 56-71.
[2] Jin Xin-Xin, Song Ya-Hui, Su Qiao, Yang Yong-Qing, Wang Jin. Growth and dry matter production characteristics of high-yielding, high-oil, and high oleic acid peanut varieties [J]. Acta Agronomica Sinica, 2026, 52(1): 191-201.
[3] Chi Xiao-Yuan, Liu Qing, Zhang Jun, Zhao Xu-Hong, Li Mei, Yu Tian-Yi, Pan Li-Juan, Xu Jing, Jiang Xiao, Yin Xiang-Zhen, Ma Jun-Qing, Chen Na. Field evaluation of salt-alkaline tolerance and trait correlation analysis in different peanut varieties (lines) [J]. Acta Agronomica Sinica, 2026, 52(1): 85-98.
[4] Chen Xuan-Yi, Zhang Jian-Wei, Zhang Xiang-Qian, Ge Guo-Long, Lu Zhan-Yuan, Guo Xing-Xing, Ma Zi-Hui, Li Xin-Yi, Chen Li-Yu. Study on the impact of different soybean-maize strip intercropping patterns on the spatio-temporal dynamics of water and heat in maize strips and on maize yield and economic returns [J]. Acta Agronomica Sinica, 2026, 52(1): 178-190.
[5] Yang Rui, Chen Jing-Dong, Huang Ying, Zhang Xue-Kun, Zhou Deng-Wen, Liu Qing-Yun, Xu Jing-Song, Xie Ling-Li, Xu Ben-Bo. Region-specific yield optimization strategies for rapeseed (Brassica napus L.) in the middle Yangtze Basin across the 30°N latitude [J]. Acta Agronomica Sinica, 2026, 52(1): 99-117.
[6] FU Jiang-Peng, LIU Fa-Cai, YAN Bao-Qin, WANG Yong-Dong, LI Li-Li, WEI Wei, ZHOU Ying-Xia. Effect of replacing common urea with controlled-release fertilizer on dry matter accumulation, partitioning, yield, and quality of sorghum in dryland farming [J]. Acta Agronomica Sinica, 2025, 51(9): 2501-2513.
[7] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[8] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[9] GUO Bao-Wei, WANG Wang, WANG Kai, WANG Yan, ZENG Xin, JING Xiu, WANG Jing, NI Xin-Hua, XU Ke, ZHANG Hong-Cheng. Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze Rive [J]. Acta Agronomica Sinica, 2025, 51(9): 2433-2453.
[10] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[11] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[12] LI Yi-Qian, XU Shou-Zhen, LIU Ping, MA Qi, XIE Bin, CHEN Hong. Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2025, 51(8): 2128-2138.
[13] FAN You-Zhong, WANG Xian-Ling, WANG Zong-Kai, WANG Chun-Yun, WANG Tian-Yao, XIE Jie, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHOU Guang-Sheng. Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice [J]. Acta Agronomica Sinica, 2025, 51(8): 2139-2151.
[14] WU Bin, CAO Yong-Gang, HU Fa-Long, YIN Wen, FAN Zhi-Long, FAN Hong, CHAI Qiang. Compensation effect of no-tillage rotation on yield reduction of nitrogen- reduced wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1959-1968.
[15] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!