Wang Yue-Sheng,Ge Dong-Dong,Cheng Lan-Fei,Chen Chun-Huan,Wang Chang-You,Liu Xin-Lun,Li Ting-Dong,Deng Ping-Chuan,Ji Wan-Quan*,Zhao Ji-Xin*
| [1] 唐秀丽. 气候变化对我国小麦白粉病流行的影响. 中国农业大学博士学位论文, 北京, 2017. Tang X L. Impacts of Climate Change on Epidemic of Wheat Powdery Mildew in China. PhD Dissertation of China Agricultural University, Beijing, 2017 (in Chinese with English abstract). [2] Bhavani S, Singh P K, Qureshi N, et al. Globally important wheat diseases: status, challenges, breeding and genomic tools to enhance resistance durability. Genomic Designing for Biotic Stress Resistant Cereal Crops. Switzerland: Springer International Publishing, 2021. pp 59–128. [3] 康振生, 王晓杰, 赵杰, 等. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48: 3439–3453. Kang Z S, Wang X J, Zhao J, et al. Advances in research of pathogenicity and virulence variation of the wheat stripe rust Fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015, 48: 3439–3453 (in Chinese with English abstract). [4] 曹世勤, 黄瑾, 孙振宇, 等. 2007–2015年小麦品种(系)抗白粉病性鉴定及评价. 江苏农业科学, 2018, 46(8): 89–92. Cao S Q, Huang J, Sun Z Y, et al. Identification and evaluation of powdery mildew resistance in wheat varieties (lines) from 2007 to 2015. Jiangsu Agric Sci, 2018, 46(8): 89–92 (in Chinese with English abstract). [5] 陈万权, 康振生, 马占鸿, 等. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46: 4254–4262. Chen W Q, Kang Z S, Ma Z H, et al. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013, 46: 4254–4262 (in Chinese with English abstract). [6] 李滨, 李振声. 中国小麦远缘杂交育种奠基人. 麦类作物学报, 2022, 42: 518–649. Li B, Li Z S. Founders of distant hybridization breeding in Chinese wheat. J Triticeae Crops, 2022, 42: 518–649 (in Chinese with English abstract). [7] 李振声. 我国小麦育种的回顾与展望. 中国农业科技导报, 2010, 12(2): 1–4. Li Z S. Retrospect and prospect of wheat breeding in China. J Agric Sci Technol, 2010, 12(2): 1–4 (in Chinese with English abstract). [8] 董玉琛. 小麦的近缘植物. 作物品种资源, 1982(1): 18–26. Dong Y C. Relatives of wheat. Crop Germplasm Resour, 1982(1): 18–26 (in Chinese with English abstract). [9] 陈漱阳, 张安静, 傅杰. 普通小麦与华山新麦草的杂交. 遗传学报, 1991, 18: 508–512. Chen S Y, Zhang A J, Fu J. Hybridization between common wheat and Psathyrostachys huashanica. Acta Genet Sin, 1991, 18: 508–512 (in Chinese with English abstract). [10] 冯艳, 任淑敏, 庞玉辉, 等. 小麦-华山新麦草染色体导入系研究进展. 农业生物技术学报, 2025, 33: 1611–1625. Feng Y, Ren S M, Pang Y H, et al. Research progress of wheat-Psathyrostachys huashanica chromosome introgression line. J Agric Biotechnol, 2025, 33: 1611–1625 (in Chinese with English abstract). [11] Bai S S, Zhang H B, Han J, et al. Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148. J Integr Agric, 2021, 20: 3101–3113. [12] Li J C, Li J J, Cheng X N, et al. Molecular cytogenetic and agronomic characterization of the similarities and differences between wheat-Leymus mollis trin. and wheat-Psathyrostachys huashanica Keng 3Ns (3D) substitution lines. Front Plant Sci, 2021, 12: 644896. [13] 张德时, 王斯文, 王长有, 等. 小麦-华山新麦草异附加系的细胞遗传学和分子标记辅助鉴定. 麦类作物学报, 2020, 40: 12–20. Zhang D S, Wang S W, Wang C Y, et al. cytogenetics and marker assisted identification of wheat-Psathyrostachys huashanica alien addition lines. J Triticeae Crops, 2020, 40: 12–20 (in Chinese with English abstract). [14] Han F P, Lamb J C, Birchler J A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA, 2006, 103: 3238–3243. [15] Tang Z X, Yang Z J, Fu S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet, 2014, 55: 313–318. [16] Feng X B, Du X, Wang S W, et al. Identification and DNA marker development for a wheat-Leymus mollis 2Ns (2D) disomic chromosome substitution. Int J Mol Sci, 2022, 23: 2676. [17] Tiwari V K, Wang S C, Sehgal S, et al. SNP discovery for mapping alien introgressions in wheat. BMC Genom, 2014, 15: 273. [18] Liu L Q, Luo Q L, Teng W, et al. Development of Thinopyrum ponticum -specific-specific molecular markers and FISH probes based on SLAF-seq technology. Planta, 2018, 247: 1099–1108. [19] Tan B W, Zhao L, Li L Y, et al. Identification of a wheat-Psathyrostachys huashanica 7Ns ditelosomic addition line conferring early maturation by cytological analysis and newly developed molecular and FISH markers. Front Plant Sci, 2021, 12: 784001. [20] Guo Z F, Wang H W, Tao J J, et al. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37. [21] Guo Z F, Yang Q N, Huang F F, et al. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230. [22] Li H. Exploring single-sample SNP and INDEL calling with whole-genomede novoassembly. Bioinformatics, 2012, 28: 1838–1844. [23] Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26: 589–595. [24] Kang Z S, Huang L L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Diseases Protect, 2002, 13: 25–37. [25] 侯富, 金银禹, 张婷, 等. 一个成株抗白粉病小麦-簇毛麦T2DS·2V#6L易位系的选育. 麦类作物学报, 2024, 44: 827–834. Hou F, Jin Y Y, Zhang T, et al. Development of a wheat-Dasypyrum villosum T2DS·2V#6L translocation line with adult-plant resistance to powdery mildew. J Triticeae Crops, 2024, 44: 827–834 (in Chinese with English abstract). [26] Qu X J, Zhang D S, Zhang X Y, et al. Cytogenetic and marker assisted identification of a wheat–Psathyrostachys huashanica Keng f. ex P.C.Kuo alien substitution line conferring processing quality and resistance to stripe rust. Genet Resour Crop Evol, 2022, 69: 687–698. [27] 王秀娟, 陈新宏, 庞玉辉, 等. 小麦-华山新麦草异代换系DH2322的分子细胞遗传学鉴定. 作物学报, 2015, 41: 207–213. Wang X J, Chen X H, Pang Y H, et al. Molecular cytogenetics identification of wheat-Psathyrostachys huashanica substitution line DH2322. Acta Agron Sin, 2015, 41: 207–213 (in Chinese with English abstract). [28] Li J C, Zhao L, Cheng X N, et al. Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng 5Ns (5D) disomic substitution line with stripe rust resistance. Mol Breed, 2019, 39: 109. [29] Metzlaff M, Troebner W, Baldauf F, et al. Wheat specific repetitive DNA sequences: construction and characterization of four different genomic clones. Theor Appl Genet, 1986, 72: 207–210. [30] Patino T. Imaging DNA origami by fluorescence in situ hybridization. Nat Nanotechnol, 2024, 19: 1556. [31] Li J C, Zhao L, Cheng X N, et al. Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line with powdery mildew resistance. BMC Plant Biol, 2020, 20: 163. [32] Pang J Y, Huang C X, Wang Y S, et al. Molecular cytological analysis and specific marker development in wheat-Psathyrostachys huashanica Keng 3Ns additional line with elongated glume. Int J Mol Sci, 2023, 24: 6726. [33] 谢中艺, 党江波, 温国, 等. 植物外源基因组成分鉴定方法的研究进展. 生物工程学报, 2021, 37: 2703–2718. Xie Z Y, Dang J B, Wen G, et al. Advances in identification methods of alien genomic components in plants. Chin J Biotechnol, 2021, 37: 2703–2718 (in Chinese with English abstract). [34] Yang X F, Wang C Y, Chen C H, et al. Development and characterization of a wheat–Leymus mollis Lm#7Ns disomic addition line with resistance to stripe rust. Cereal Res Commun, 2020, 48: 467–476. [35] 李欢, 张文洋, 田志强, 等. 高通量分子标记检测方法的研究进展. 玉米科学, 2022, 30(3): 1–9. Li H, Zhang W Y, Tian Z Q, et al. Research progress of high-throughput molecular marker detection methods. J Maize Sci, 2022, 30(3): 1–9 (in Chinese with English abstract). [36] 李洪杰, 王晓鸣, 宋凤景, 等. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954. Li H J, Wang X M, Song F J, et al. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract). [37] McDonald B A, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol, 2002, 40: 349–379. [38] 贾子苗, 邱玉亮, 林志珊, 等. 利用近缘种属优良基因改良小麦研究进展. 作物杂志, 2021(2): 1–14. Jiia Z M, Qiu Y L, Lin Z S, et al. Research progress on wheat improvement by using desirable genes from its relative species. Crops, 2021(2): 1–14 (in Chinese with English abstract). [39] 曹亚萍, 武银玉, 刘博, 等. 小麦异源易位系诱致方法及应用研究进展. 植物遗传资源学报, 2022, 23: 943–953. Cao Y P, Wu Y Y, Liu B, et al. Progress on induction and application of wheat alien chromosome translocation lines. J Plant Genet Resour, 2022, 23: 943–953 (in Chinese with English abstract). |
| [1] | LI Yun-Xiang, GUO Qian-Qian, HOU Wan-Wei, ZHANG Xiao-Juan. Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA [J]. Acta Agronomica Sinica, 2025, 51(9): 2387-2398. |
| [2] | HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386. |
| [3] | YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484. |
| [4] | LI Lu-Qi, CHENG Yu-Kun, BAI Bin, LEI Bin, GENG Hong-Wei. Genome-wide association analysis of stomatal-related traits in wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(9): 2266-2284. |
| [5] | KONG De-Zhen, SANG Wei, NIE Ying-Bin, LI Wei, XU Hong-Jun, LI Jiang-Bo, LIU Peng-Peng, TIAN Xiao-Ming. Comparative analysis of metabolite changes during young panicle development in wheat AL type cytoplasmic male serile line and homologous maintainers [J]. Acta Agronomica Sinica, 2025, 51(9): 2454-2466. |
| [6] | YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219. |
| [7] | ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127. |
| [8] | YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203. |
| [9] | SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175. |
| [10] | WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189. |
| [11] | GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250. |
| [12] | JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086. |
| [13] | LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047. |
| [14] | CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032. |
| [15] | WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826. |
|
||