Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 131-147.doi: 10.3724/SP.J.1006.2026.53032

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening and identification of candidate resistance genes to gibberella ear rot caused by Fusarium graminearum in maize

Dong Li-Hua(), Dong Cheng-Yan, Li Zheng-Nan, Yu Jing, Ye Liang, Liu Fang, Tan Jing*()   

  1. School of Agriculture, Yunnan University, Kunming 650500, Yunnan, China
  • Received:2025-05-29 Accepted:2025-10-30 Online:2026-01-12 Published:2025-11-05
  • Contact: *E-mail: tanjingli@sina.com
  • Supported by:
    National Natural Science Foundation of China(32260516)

Abstract:

Gibberella ear rot (GER) of maize (Zea mays L.), caused by Fusarium graminearum (Fg), is a major factor contributing to yield losses in southwestern China. In this study, two highly resistant inbred lines (4019 and NMJT) and two highly susceptible lines (Huangzaosi and GEMS61) were selected. Kernels at 15 days after pollination were inoculated with Fg, and samples were collected at three post-infection time points for transcriptome sequencing. Candidate resistance genes were identified, cloned, and preliminarily validated through a combination of differentially expressed gene (DEG) analysis, previous genome-wide association study (GWAS) results, qRT-PCR validation, cloning and sequence alignment, and expression pattern analysis. The main findings were as follows: (1) Transcriptome analysis revealed a large number of DEGs between resistant and susceptible lines at all three infection stages. The two resistant lines shared common defense responses, with DEGs significantly enriched in pathways such as plant secondary metabolism, plant hormone signal transduction, calcium signaling, and the antioxidant system. In addition, each resistant line exhibited specific defense mechanisms by regulating unique gene expression patterns. (2) Integration of DEG and GWAS data identified 24 co-localized genes. Based on gene annotation and literature reports, 12 genes were predicted as potential candidates for GER resistance. Among these, two genes—Zm00001eb104020 and Zm00001eb195780—were successfully cloned and validated by qRT-PCR. (3) Protein sequence analysis revealed shared mutations and deletions between resistant and susceptible lines. The two candidate genes also showed distinct spatiotemporal expression patterns, with significantly higher expression levels in resistant lines. Both genes were strongly induced and upregulated in kernels following Fg inoculation. These results provide a theoretical foundation for further functional characterization of GER resistance mechanisms and the breeding of resistant maize germplasm.

Key words: maize, gibberella ear rot, candidate resistance genes, functional site identification, spatio-temporal expression characteristics

Table 1

Information on maize inbred lines with high resistance and high susceptibility to GER"

抗性
Resistance
代号
No.
自交系
Inbred lines
系谱
Pedigree
来源/类群
Source/group
高抗
High resistance
R1 4019 G108×G172 中国/温带非硬秆种China / temperate non-stiff stalk group
R2 NMJT 地方种质
Local germplasm
中国/温热混合China / temperate & tropical mixed group
高感
High susceptibility
S1 黄早四Huangzaosi 黄改Huanggai 中国/唐四平头China / Tangsipingtou
S2 GEMS61 ARI16026:S17-10-1-B-B 美国/热带USA / tropical group

Table 2

DEGs between highly resistant inbred R1 and highly susceptible inbreds S1 and S2 under the same treatment at three sampling time points"

组合
Paired samples
处理
Treatment
0 hpi 1.5 hpi 6 hpi
上调Up 下调Down 上调Up 下调Down 上调Up 下调Down
R1 vs S1 CK 7461 7959 6487 6514 7105 7111
Fg 6593 6624 6896 6709 7161 6789
Fg-CK 1875 1554 2305 2323 2382 2328
R1 vs S2 CK 7047 7552 5918 6826 5451 5752
Fg 5110 5872 4727 5162 6380 6375
Fg-CK 1956 1731 1724 1464 2525 2195

Table 3

DEGs between highly resistant inbred R2 and highly susceptible inbreds S1 and S2 under the same treatment at three sampling time points"

组合
Paired samples
处理
Treatment
0 hpi 1.5 hpi 6 hpi
上调Up 下调Down 上调Up 下调Down 上调Up 下调Down
R2 vs S1 CK 7683 7630 5677 5207 7497 7672
Fg 5660 5824 6460 6001 4037 4074
Fg-CK 1175 939 2476 2335 1051 1176
R2 vs S2 CK 7634 7869 5782 6321 5933 6361
Fg 5529 6193 6221 5911 4903 5458
Fg-CK 1687 1517 2575 1695 1753 1654

Fig. 1

Venn diagrams of common DEGs between R1 vs S1 & S2 and R2 vs S1 & S2 at three sampling time points A: Venn diagrams of Up DEGs; B: Venn diagrams of Down DEGs. 0 hpi, 1.5 hpi, and 6 hpi indicated the grains cultured on PDA plate for 0 h, 1.5 h and 6 h, respectively."

Fig. 2

GO and KEGG enrichment analysis of common DEGs between R1 vs S1 & S2 and R2 vs S1 & S2 at three sampling time points A: GO analysis of up-regulated DEGs; B: GO analysis of down-regulated DEGs; C: KEGG analysis of up-regulated DEGs; D: KEGG analysis of down-regulated DEGs. 0 hpi, 1.5 hpi and 6 hpi indicated the grains cultured on PDA plate for 0 h, 1.5 h and 6 h, respectively. BP: biological process; CC: cellular component; MF: molecular function."

Table 4

Co-localization of transcriptome DEGs with previous GWAS results"

基因
Gene
描述
Description
Zm00001eb240340 含ABC转运蛋白结构域的蛋白质ABC transporter domain-containing protein
Zm00001eb309360 MYB-CC型转录因子LHEQLE含结构域蛋白
MYB-CC type transcription factor LHEQLE-containing domain-containing protein
Zm00001eb309010 磷酸甘油酸变位酶家族蛋白Phosphoglycerate mutase family protein
Zm00001eb070740 四肽重复序列(TPR)样超家族蛋白Tetratricopeptide repeat (TPR)-like superfamily protein
Zm00001eb070690 DNA聚合酶DNA polymerase eta
Zm00001eb070770 光系统Ⅰ的积累Accumulation of photosystem Ⅰ
Zm00001eb354690 植物血红素过氧化物酶家族结构域内含蛋白Plant heme peroxidase family profile domain-containing protein
Zm00001eb070760 蛋白质阿戈核酸酶2 Protein argonaute 2
Zm00001eb248650 细胞周期蛋白-T1-3 Cyclin-T1-3
Zm00001eb195760 抗病蛋白RPM1 Disease resistance protein RPM1
Zm00001eb197630 谷氨酰tRNA (Gln)酰胺转移酶亚基B叶绿体/线粒体
Glutamyl-tRNA (Gln) amidotransferase subunit B chloroplastic / mitochondrial
Zm00001eb070720 富含亮氨酸的重复跨膜蛋白激酶Leucine-rich repeat transmembrane protein kinase
Zm00001eb239920 蛋白质丝氨酸/苏氨酸磷酸酶Protein-serine/threonine phosphatase
Zm00001eb195720 未鉴定蛋白Uncharacterized protein
Zm00001eb195790 TRAF样超家族蛋白TRAF-like superfamily protein
Zm00001eb195710 假定的无酶家族蛋白Putative apyrase family protein
Zm00001eb104020 磷脂酶D Phospholipase D
Zm00001eb070750 OSJNBa0008M17.14样蛋白OSJNBa0008M17.14-like protein
Zm00001eb195780 V型质子ATP酶亚单位S1/VOA1跨膜结构域含蛋白
V-type proton ATPase subunit S1/VOA1 transmembrane domain-containing protein
Zm00001eb106040 聚腺苷酸结合蛋白RBP45C Polyadenylate-binding protein RBP45C
Zm00001eb070700 LRR受体样丝氨酸/苏氨酸蛋白激酶LRR receptor-like serine/threonine-protein kinase
Zm00001eb248680 含NAC结构蛋白质NAC domain-containing protein
Zm00001eb070730 富含亮氨酸的重复跨膜蛋白激酶Leucine-rich repeat transmembrane protein kinase
Zm00001eb354680 过氧化物酶Peroxidase

Fig. 3

qRT-PCR verification of candidate genes R1: highly resistant material 4019; R2: highly resistant material NMJT; S1: highly susceptible material Huangzaosi; S2: highly susceptible material GEMS61. CK: sterile water treatment; Fg: inoculation treatment. 0 hpi, 1.5 hpi, and 6 hpi indicated the grains cultured on PDA plate for 0 h, 1.5 h, and 6 h respectively."

Fig. 4

Amino acid sequence alignment of candidate genes Zm00001eb104020 (A) and Zm00001eb195780 (B) between high resistant and high susceptibility inbreds R1: highly resistant material 4019; R2: highly resistant material NMJT; S1: highly susceptible material Huangzaosi; S2: highly susceptible material GEMS61."

Fig. 5

Expression profiles of candidate genes Zm00001eb104020 and Zm00001eb195780 in different tissues of four inbreds across four periods R1: highly resistant material 4019; R2: highly resistant material NMJT; S1: highly susceptible material Huangzaosi; S2: highly susceptible material GEMS61."

Fig. 6

Expression profiles of candidate genes Zm00001eb104020 and Zm00001eb195780 in different tissues of four inbreds at two periods under Fg infection R1: highly resistant material 4019; R2: highly resistant material NMJT; S1: highly susceptible material Huangzaosi; S2: highly susceptible material GEMS61. CK: sterile water treatment; Fg: inoculation treatment. R: root; S: stalk; L: leaves; MF: male flower; FF: female flower; C: corn grian. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. S1

GO and KEGG enrichment analysis of DEGs between highly resistant inbred R1 and highly susceptible inbreds S1, S2 at three sampling time points A: GO analysis of up-regulated DEGs; B: GO analysis of down-regulated DEGs; C: KEGG analysis of up-regulated DEGs; D: KEGG analysis of down-regulated DEGs. 0 hpi, 1.5 hpi, and 6 hpi indicated the grains cultured on PDA plate for 0 h, 1.5 h, and 6 h, respectively. BP: biological process; CC: cellular component; MF: molecular function."

Fig. S2

GO and KEGG enrichment analysis of DEGs between highly resistant inbred R2 and highly susceptible inbreds S1, S2 at three sampling time points A: GO analysis of up-regulated DEGs; B: GO analysis of down-regulated DEGs; C: KEGG analysis of up-regulated DEGs; D: KEGG analysis of down-regulated DEGs. 0 hpi, 1.5 hpi, and 6 hpi indicated the grains cultured on PDA plate for 0 h, 1.5 h, and 6 h, respectively. BP: biological process; CC: cellular component; MF: molecular function."

[1] Ullstrup A J. An undescribed ear rot of corn caused by physalospora zeae. Phytopathol, 1946, 36: 201-212.
[2] Atanasova-Penichon V, Pons S, Pinson-Gadais L, et al. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Mol Plant Microbe Interact, 2012, 25: 1605-1616.
doi: 10.1094/MPMI-06-12-0153-R
[3] Beukes I, Rose L J, van Coller G J, et al. Disease development and mycotoxin production by the Fusarium graminearum species complex associated with South African maize and wheat. Eur J Plant Pathol, 2018, 150: 893-910.
doi: 10.1007/s10658-017-1331-5
[4] Tran T N, Lanubile A, Marocco A, et al. Transcriptome profiling of eight Zea mays lines identifies genes responsible for the resistance to Fusarium verticillioides. BMC Plant Biol, 2024, 24: 1107.
doi: 10.1186/s12870-024-05697-y
[5] 陈晓娟, 文成敬. 四川省玉米穗腐病研究初报. 西南农业大学学报(自然科学版), 2002, 24(1): 21-23.
Chen X J, Wen C J. Preliminary study of maize ear rot in Sichuan. J Southwest Agric Univ (Nat Sci Edn), 2002, 24(1): 21-23 (in Chinese with English abstract).
[6] 李辉, 向葵, 张志明, 等. 玉米穗腐病抗性机制及抗病育种研究进展. 玉米科学, 2019, 27(4): 167-174.
Li H, Xiang K, Zhang Z M, et al. Research progress on ear rot resistant mechanism and resistant breeding in maize. J Maize Sci, 2019, 27(4): 167-174 (in Chinese with English abstract).
[7] 张帆, 万雪琴, 潘光堂. 玉米抗穗粒腐病QTL定位. 作物学报, 2007, 33: 491-496.
Zhang F, Wan X Q, Pan G T. Molecular mapping of QTL for resistance to maize ear rot caused by Fusarium moniliforme. Acta Agron Sin, 2007, 33: 491-496 (in Chinese with English abstract).
[8] 张艳, 谭静. 玉米穗粒腐病的研究进展. 现代农业科技, 2014(21): 121-122.
Zhang Y, Tan J. Research progress on ear rot in maize. Mod Agric Sci Technol, 2014(21): 121-122 (in Chinese with English abstract).
[9] Folcher L, Jarry M, Weissenberger A, et al. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Prot, 2009, 28: 302-308.
doi: 10.1016/j.cropro.2008.11.007
[10] Lanubile A, Maschietto V, Borrelli V M, et al. Molecular basis of resistance to Fusarium ear rot in maize. Front Plant Sci, 2017, 8: 1774.
doi: 10.3389/fpls.2017.01774
[11] 段灿星, 王晓鸣, 宋凤景, 等. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152-2164.
doi: 10.3864/j.issn.0578-1752.2015.11.007
Duan C X, Wang X M, Song F J, et al. Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015, 48: 2152-2164 (in Chinese with English abstract).
[12] 席靖豪. 黄淮海夏玉米穗腐病病原多样性分析及玉米新品种抗病性鉴定. 河南农业大学硕士学位论文, 河南郑州, 2018.
Xi J H. Pathogen Diversity of Summer Maize Ear Rot in Huang-Huai-Hai Region and Resistance Identification of New Maize Cultivars. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).
[13] 程璐, 陈家斌, 张艺璇, 等. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44: 647-654.
Cheng L, Chen J B, Zhang Y X, et al. Research comparison of two dominant pathogens on maize ear rot. J Yunnan Univ (Nat Sci Edn), 2022, 44: 647-654 (in Chinese with English abstract).
[14] 秦子惠, 任旭, 江凯, 等. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41: 589-596.
Qin Z H, Ren X, Jiang K, et al. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. J Plant Prot, 2014, 41 589-596 (in Chinese with English abstract).
[15] 张小飞, 邹成佳, 崔丽娜, 等. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078-2082.
Zhang X F, Zou C J, Cui L N, et al. Identification of pathogen causing maize ear rot and inoculation technique in southwest China. Southwest China J Agric Sci, 2012, 25: 2078-2082 (in Chinese with English abstract).
[16] 苏爱国, 王帅帅, 段赛茹, 等. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定. 植物遗传资源学报, 2021, 22: 971-978.
doi: 10.13430/j.cnki.jpgr.20210201004
Su A G, Wang S S, Duan S R, et al. Identification for ear rot resistance against Fusarium graminearum in maize germplasm. J Plant Genet Resour, 2021, 22: 971-978 (in Chinese with English abstract).
[17] Mesterházy Á, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize-a review. Plant Breed, 2012, 131: 1-19.
doi: 10.1111/pbr.2011.131.issue-1
[18] 宋立秋, 魏利民, 王振营, 等. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487-490.
Song L Q, Wei L M, Wang Z Y, et al. Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. J Plant Prot, 2009, 36: 487-490 (in Chinese with English abstract).
[19] 王宝宝. 玉米穗腐病致病镰孢菌鉴定与寄主抗性. 中国农业科学院硕士学位论文, 北京, 2020.
Wang B B. Identification of Pathogenic Fusarium Species Causing Maize Ear Rot and Study on Host Resistance. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020 (in Chinese with English abstract).
[20] Gauthier L, Bonnin-Verdal M N, Marchegay G, et al. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: new insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int J Food Microbiol, 2016, 221: 61-68.
doi: S0168-1605(16)30006-X pmid: 26812586
[21] Yuan G S, Shi J H, Zeng C, et al. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium graminearum. BMC Genomics, 2024, 25: 733.
doi: 10.1186/s12864-024-10656-w
[22] 杨俊伟, 王建军, 赵变平, 等. 玉米新品种抗禾谷镰孢菌穗腐病鉴定与评价. 河北农业科学, 2020, 24(4): 47-49.
Yang J W, Wang J J, Zhao B P, et al. Identification and evaluation of resistance of maize hybrids to Fusarium graminearum ear rot. J Hebei Agric Sci, 2020, 24(4): 47-49 (in Chinese with English abstract).
[23] 夏玉生, 郭成, 温胜慧, 等. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报, 2022, 23: 61-71.
Xia Y S, Guo C, Wen S H, et al. Identification of maize germplasm resistant to Fusarium ear rot and Gibberella ear rot and genetic diversity analysis of resistant lines. J Plant Genet Resour, 2022, 23: 61-71 (in Chinese with English abstract).
[24] 段灿星, 崔丽娜, 夏玉生, 等. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155-2167.
doi: 10.3724/SP.J.1006.2022.13055
Duan C X, Cui L N, Xia Y S, et al. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agron Sin, 2022, 48: 2155-2167 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13055
[25] 何玥, 郭爽, 王栋, 等. 玉米地方种质资源对禾谷镰孢菌穗腐病的抗性评价. 耕作与栽培, 2023, 43(5): 1-5.
He Y, Guo S, Wang D, et al. Identification for ear rot resistance against Fusarium graminearum in maize Landrace germplasm. Tillage Cult, 2023, 43(5): 1-5 (in Chinese with English abstract).
[26] 陈鸽, 王敏, 周德龙, 等. 523份玉米自交系对禾谷镰孢穗腐病和灰斑病的抗性鉴定. 中国农业大学学报, 2025, 30(1): 27-37.
Chen G, Wang M, Zhou D L, et al. Resistance evaluation of 523 maize inbred lines to Gibberella ear rot and gray leaf spot. J China Agric Univ, 2025, 30(1): 27-37 (in Chinese with English abstract).
[27] Butrón A, Reid L M, Santiago R, et al. Inheritance of maize resistance to Gibberella and Fusarium ear rots and kernel contamination with deoxynivalenol and fumonisins. Plant Pathol, 2015, 64: 1053-1060.
doi: 10.1111/ppa.2015.64.issue-5
[28] Martin M, Dhillon B S, Miedaner T, et al. Inheritance of resistance to Gibberella ear rot and deoxynivalenol contamination in five flint maize crosses. Plant Breed, 2012, 131: 28-32.
doi: 10.1111/pbr.2011.131.issue-1
[29] Xia Y S, Wang B B, Zhu L H, et al. Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA sequencing. Front Plant Sci, 2022, 13: 954546.
doi: 10.3389/fpls.2022.954546
[30] Reinprecht Y, Wu X G, Yan S, et al. A microarray-based approach for identifying genes for resistance to Fusarium graminearum in maize (Zea mays L.). Cereal Res Commun, 2008, 36: 253-259.
doi: 10.1556/CRC.36.2008.Suppl.B.23
[31] Yuan G S, Chen B F, Peng H, et al. QTL mapping for resistance to ear rot caused by Fusarium graminearum using an IBM Syn 10 DH population in maize. Mol Breed, 2020, 40: 91.
doi: 10.1007/s11032-020-01158-0
[32] Akohoue F, Miedaner T. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. Front Plant Sci, 2022, 13: 1050891.
doi: 10.3389/fpls.2022.1050891
[33] 王梓钰, 李世界, 闻竞, 等. 玉米禾谷镰孢穗腐病抗性的QTL定位. 玉米科学, 2022, 30(4): 31-39.
Wang Z Y, Li S J, Wen J, et al. QTL mapping of resistance to Gibberella ear rot in maize. J Maize Sci, 2022, 30(4): 31-39 (in Chinese with English abstract).
[34] 周帆, 杨喆, 崔婷茹, 等. 玉米ZmBT2b基因在抵抗禾谷镰孢侵染中的功能研究. 河北农业大学学报, 2024, 47(1): 19-28.
doi: 10.13320/j.cnki.jauh.2024.0003
Zhou F, Yang Z, Cui T R, et al. Function of ZmBT2b gene in maize resistance to Fusarium graminearum. J Hebei Agric Univ, 2024, 47(1): 19-28 (in Chinese with English abstract).
[35] 闻竞, 邢跃先, 沈彦岐, 等. 玉米禾谷镰孢穗腐病抗性基因的挖掘. 分子植物育种, 网络首发[2025-01-14], https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FZZW20250113007&dbname=CJFD&dbcode=CJFQ.
Wen J, Xing Y X, Shen Y Q, et al. Exploration of specific gene(s) for ear rot resistance to Fusarium graminearum in maize. Mol Plant Breed, Published online [2025-01-14], https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FZZW20250113007&dbname=CJFD&dbcode=CJFQ (in Chinese with English abstract).
[36] 高佳琪. 玉米穗腐病抗性与花期性状的全基因组关联分析. 云南大学硕士学位论文, 云南昆明, 2022.
Gao J Q. Genome-wide Association Study of Ear Rot Resistance and Flowering Traits of Maize. MS Thesis of Yunnan University, Kunming, Yunnan, China, 2022 (in Chinese with English abstract).
[37] Yao L S, Li Y M, Ma C Y, et al. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535-1551.
doi: 10.1111/jipb.v62.10
[38] Zhang Y, Peng Y X, Liu J, et al. Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. Plant Physiol, 2023, 192: 648-665.
doi: 10.1093/plphys/kiad085 pmid: 36760172
[39] Guo J, Yao Q, Dong J, et al. Immunophilin FKB20-2 participates in oligomerization of photosystem I in Chlamydomonas. Plant Physiol, 2024, 194: 1631-1645.
doi: 10.1093/plphys/kiad645
[40] 段明. 低温胁迫下番茄类囊体膜抗坏血酸过氧化物酶基因的表达和功能研究. 山东农业大学博士学位论文, 山东泰安, 2012.
Duan M. Expression and Functional Analysis of the LetAPX in Tomato under Chilling Stress. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2012 (in Chinese with English abstract).
[41] Yin W C, Xiao Y H, Niu M, et al. ARGONAUTE 2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell, 2020, 32: 2292-2306.
doi: 10.1105/tpc.19.00542
[42] 查笑君, 马伯军, 潘建伟, 等. 植物富亮氨酸重复类受体蛋白激酶的研究进展. 浙江师范大学学报(自然科学版), 2010, 33(1): 7-12.
Zha X J, Ma B J, Pan J W, et al. Research advances in leucine-rich repeat receptor-like protein kinases in plants. J Zhejiang Norm Univ (Nat Sci), 2010, 33(1): 7-12 (in Chinese with English abstract).
[43] 安炎黄. 磷脂酶参与冬凌草甲素对拟南芥的化感潜能作用. 西北师范大学硕士学位论文, 甘肃兰州, 2019.
An Y H. Phospholipase is Involved in the Allelopathy of Oridonin in Arabidopsis thaliana. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2019 (in Chinese with English abstract).
[44] 王秀娟, 高山, 王国泽. 磷脂酶D的抗逆特性及其活性检测研究. 湖北农业科学, 2014, 53: 998-1000.
Wang X J, Gao S, Wang G Z. Characteristics of stress tolerance and activity detection of phospholipase D. Hubei Agric Sci, 2014, 53: 998-1000 (in Chinese with English abstract).
[45] Walley J W, Sartor R C, Shen Z X, et al. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353: 814-818.
doi: 10.1126/science.aag1125 pmid: 27540173
[46] 陈道波, 王教瑜, 肖琛闻, 等. ABC转运蛋白结构及在植物病原真菌中的功能研究进展. 生物化学与生物物理进展, 2021, 48: 309-316.
Chen D B, Wang J Y, Xiao C W, et al. Research progress in structure of ABC transporters and their function in pathogenic fungi. Prog Biochem Biophys, 2021, 48: 309-316 (in Chinese with English abstract).
[47] Kovalchuk A, Driessen A J M. Phylogenetic analysis of fungal ABC transporters. BMC Genomics, 2010, 11: 177.
doi: 10.1186/1471-2164-11-177 pmid: 20233411
[48] Aryal B, Xia J, Hu Z H, et al. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth- defense decisions. Curr Biol, 2023, 33: 2008-2023.e8.
doi: 10.1016/j.cub.2023.04.029
[49] 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展. 生物技术通报, 2022, 38(8): 12-23.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1350
Wei X X, Lan H Y. Advances in the regulation of plant MYB transcription factors in secondary metabolism and stress response. Biotechnol Bull, 2022, 38(8): 12-23 (in Chinese with English abstract).
[50] 蒋滔. 玉米抗灰斑病主效QTL-qGLS8候选基因的功能鉴定与分析. 贵州大学硕士学位论文, 贵州贵阳, 2023.
Jiang T. Functional Identification and Analysis of Candidate Gene QTL-qGLS8 for Resistance to Gray Leaf Spot in Maize. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2023 (in Chinese with English abstract).
[51] Armijo G, Salinas P, Monteoliva M I, et al. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. Mol Plant Microbe Interact, 2013, 26: 1395-1406.
doi: 10.1094/MPMI-02-13-0044-R
[52] Nie Y B, Ji W Q. Cloning and characterization of disease resistance protein RPM1 genes against powdery mildew in wheat line N9134. Cereal Res Commun, 2019, 47: 473-483.
doi: 10.1556/0806.47.2019.27
[53] Wang A J, Shu X Y, Jing X, et al. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome- wide association study. Plant Biotechnol J, 2021, 19: 1553-1566.
doi: 10.1111/pbi.v19.8
[54] 陈雷. 玉米磷脂酶D基因家族的克隆及功能分析. 四川农业大学硕士学位论文, 四川雅安, 2019.
Chen L. Cloning and Functional Analysis of Maize Phospholipase D Gene Family. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019 (in Chinese with English abstract).
[55] Li J X, Yu F, Guo H, et al. Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res, 2020, 30: 61-69.
doi: 10.1038/s41422-019-0244-6 pmid: 31619765
[1] Wang Ting, Duan Wu-Li, Wang Rui, Liu Hai-Lan. Evolution and expression analysis of the choline monooxygenase gene family in plants [J]. Acta Agronomica Sinica, 2026, 52(1): 44-55.
[2] Su Ai-Guo, Xiao Sen-Lin, Yi Hong-Mei, Duan Sai-Ru, Wang Shuai-Shuai, Zhang Ru-Yang, Xing Jin-Feng, Li Chun-Hui, Sun Xuan, Xu Rui-Bin, Xu Tian-Jun, Li Zhi-Yong, Zhang Yong, Wang Rong-Huan, Song Wei, Zhao Jiu-Ran. Research progress and breeding application of resistance genetics to ear rot in maize [J]. Acta Agronomica Sinica, 2026, 52(1): 1-13.
[3] Chen Xuan-Yi, Zhang Jian-Wei, Zhang Xiang-Qian, Ge Guo-Long, Lu Zhan-Yuan, Guo Xing-Xing, Ma Zi-Hui, Li Xin-Yi, Chen Li-Yu. Study on the impact of different soybean-maize strip intercropping patterns on the spatio-temporal dynamics of water and heat in maize strips and on maize yield and economic returns [J]. Acta Agronomica Sinica, 2026, 52(1): 178-190.
[4] Zhang Qing-Yi, Xiao Yi-Tao, Li Qiu-Xia, Zhang Yu-Shi, Zhang Ming-Cai, Li Zhao-Hu. Differences in ABA synthesis and physiological and biochemical responses of seedlings of different maize varieties under osmotic stress [J]. Acta Agronomica Sinica, 2026, 52(1): 221-232.
[5] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[6] JIANG Huan-Qi, DUAN Ao, GUO Chao, HUANG Xiao-Meng, AI De-Jun, LIU Xiao-Xue, TAN Jing-Yi, PENG Cheng-Lin, LI Man-Fei, DU He-Wei. Effects of waterlogging stress on root metabolism of maize seedlings [J]. Acta Agronomica Sinica, 2025, 51(9): 2295-2306.
[7] GAO Yuan, WANG Yu-Qi, JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin. Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize [J]. Acta Agronomica Sinica, 2025, 51(9): 2318-2329.
[8] ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340.
[9] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[10] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[11] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
[12] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[13] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[14] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[15] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!