Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 1-13.doi: 10.3724/SP.J.1006.2026.53053

• REVIEW •     Next Articles

Research progress and breeding application of resistance genetics to ear rot in maize

Su Ai-Guo(), Xiao Sen-Lin, Yi Hong-Mei, Duan Sai-Ru, Wang Shuai-Shuai, Zhang Ru-Yang, Xing Jin-Feng, Li Chun-Hui, Sun Xuan, Xu Rui-Bin, Xu Tian-Jun, Li Zhi-Yong, Zhang Yong, Wang Rong-Huan(), Song Wei(), Zhao Jiu-Ran()   

  1. Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • Received:2025-07-18 Accepted:2025-10-10 Online:2026-01-12 Published:2025-10-13
  • Contact: *E-mail: maizezhao@126.com; E-mail: songwei@baafs.net.cn; E-mail: ronghuanwang@126.com
  • Supported by:
    Beijing Academy of Agriculture and Forestry Sciences Innovation Capability Construction Special Project(KJCX20230303);Beijing Scholars Program(BSP041)

Abstract:

Ear rot is a significant disease in maize production, with ramifications for both yield and quality. Furthermore, the toxin produced by the pathogen poses a threat to human and animal health. The most efficacious method of controlling ear rot is to breed and plant highly resistant varieties of maize. A significant number of researchers have conducted in-depth studies on the resistance candidate genes and molecular genetic mechanisms in response to dominant pathogens. QTL and significant associated SNP loci related to ear rot resistance have been reported on all 10 chromosomes of maize. However, due to the complexity of pathogen infection and the fact that resistance is quantitative trait locus-controlled trait influenced by multiple genes, there are few examples of such research being applied to disease-resistant breeding. The present paper introduces the main pathogens of corn ear rot, their geographical distribution, factors influencing disease incidence, and toxin hazards. The present paper constitutes a review of recent research progress in the identification of FER (fusarium ear rot, FER) and GER (gibberella ear rot, GER) resistance genes and their molecular genetic mechanisms. Moreover, it provides an outlook for disease-resistant breeding. Advances in multi-omics joint analysis and the application of new biological technologies are expected to promote the identification of major resistance genes and the elucidation of molecular mechanisms. Consequently, this may lead to the accelerated creation of resistance germplasm and breeding for resistance to ear rot in maize.

Key words: maize, ear rot, pathogens, resistance gene, defence mechanism, resistant breeding

Table 1

Resistance-related QTL and significantly associated SNP loci for FER and GER in maize"

病原菌Fusarium 分析方法a
Analysis
Methoda
分子标记b
Molecular makerb
群体信息c
Population informationc
鉴定的QTL/SNP
QTL/SNP identified
染色体分布d
Chromosome distributiond
参考文献
Reference
FER LM SSR, 105; SSR, 113 BC1F1:2 (GE440×FR1064), 213; RILs (NC300×B104), 143 QTLs, 12 4, 5 Robertson et al[40]
FER LM SSR, 246 RILs (87-1×Zong3), 187 QTLs, 6 3, 5, 8, 10 Ding et al[41]
FER, GER LM SNP, 250 RILs (LP4637×L4674), 298 QTLs, 4 2, 3, 5 Giomi et al[42]
FER LM MaizeSNP50 array MAGIC RILs, 229 QTL, 1 9 Neupane et al[43]
FER LM SNP RILs, 215, 113, 122 QTLs, 22 1, 2, 4, 5, 7, 10 Feng et al[44]
FER LM SNP, 58556 RILs, 672 QTLs, 13 1-4, 6-10 Butrón et al[45]
FER LM SNP, 466441 F2 (Cheng351×ZW18, Dan598×ZW18, JiV203×ZW18), 3 QTLs, 20 1-4, 6-9 Wen et al[46]
FER LM SSR, 41; SNP, LM 342 F2:3 (CO441×CO354), 188 QTLs, 15 1-9 Maschietto et al[47]
FER LM, RNA-seq SNP, 121 RILs (A637×EP42), 144 QTLs, 3; DEGs, 364 4, 6, 8 Cao et al[48]
FER LM, RNA-seq RILs (Qi319×Ye478), 300 QTLs, 17 1, 3-5, 7, 8 Xia et al[49]
FER LM, RNA-seq SNP, 56110 MAGIC RILs, 401 QTLs, 10 1-6 Septiani et al[50]
FER GWAS, LM SSR, 178 F2:3 (BT-1×Xi502), 210 QTLs, 3 4, 5, 10 Chen et al[51]
FER GWAS, LM SNP, 43424; SSR, 200 CIMMYT, 818; DH, 1; F2:3, 3 SNPs, 45; QTLs, 15 2-5, 9, 10 Chen et al[52]
FER GWAS, LM SNP, 955650; SSR, 207 265; RILs (BT×N6), 250 SNPs, 18; QTLs, 10 3-5 Wu et al[53]
FER GWAS DArT array, 23153 242 DArTs, 12 1, 4, 5, 7, 8, 10 De Jong et al[54]
FER GWAS SNP, 200978 1687 SNPs, 7 4, 5, 9 Zila et al[55]
FER GWAS SNP, 47445 267 QTLs, 3 1, 5, 9 Zila et al[56]
FER GWAS SNP, 519417 151 SNPs, 10 1-3, 6, 9, 10 Ayesiga et al[57]
FER GWAS SNP, 3034 874 SNPs, 19 1-9 Liu et al[58]
FER GWAS SNP, 226446 230 SNPs, 42 1-6,8,9 Stagnati et al[59]
FER GWAS SNP, 56110 244 SNPs, 2 2, 5 Han et al[60]
FER GWAS, RNA-seq SNP, 560000 508 SNPs, 34; genes, 69 1, 3, 5, 9, 10 Yao et al[19]
FER GWAS, BSA SNP, 37801 509 SNPs, 23 3, 4, 7, 9, 10 Guo et al[61]
FER GWAS, RNA-seq SNP, 20586 241 SNPs, 26 1, 3, 5-10 Ye et al[62]
GER LM SNP, 2784-4603 Biparental populations, 6 QTLs, 4 1, 3, 5, 8 Carneiro et al[63]
GER LM Recombination bin-markers, 6618 DH (B73×Mo17), 298 QTLs, 10 1-3, 6-9 Yuan et al[64]
GER LM SNP, 6618; SNP, 8535831 DH (B73×Mo17), 246 QTLs, 14; SNPs, 5 1-6, 8, 9 Yuan et al[65]
GER LM MaizeSNP56 array RILs (DH4866×T877), 204 QTLs, 11 1-4, 7-10 Zhou et al[37]
GER GWAS MaizeSNP56 array 334 SNPs, 69 1-10 Zhou et al[66]
GER GWAS SNP, 43735 316 SNPs, 16 1-10 Yuan et al[67]
GER GWAS, RNA-seq SNP, 1318609 420 SNPs, 151 1-10 Su et al[68]

Fig. 1

Distribution of SNP loci and SNP hotspot regions related to ear rot resistance on maize chromosomes Data source: data on SNP significantly associated with resistance to maize ear rot were obtained from 19 GWAS reports (SCI-indexed) published to date, comprising 14 studies on FER resistance and 5 studies on GER resistance. Reference genome version: due to different versions of the B73 reference genome being used in earlier individual studies, all data were mapped uniformly to the corresponding positions in B73_v4. Unmappable SNP were excluded, resulting in 687 SNP. Defining hotspot regions: to reveal the distribution characteristics of these SNP loci on chromosomes, a sliding window of 5 Mb intervals was defined. A window containing ≥ 4 reported SNP loci from ≥ 3 independent studies was defined as an SNP hotspot region for FER/GER. 4. The unit for physical distance on chromosomes is Mb. Abbreviations are the same as those given in Table 1."

Fig. 2

Schematic diagram of the defence response of maize ear rot after pathogen infection PAMP: pathogen-associated molecular patterns; PTI: PAMP-triggered immunity; ETI: effector-triggered immunity; PRR: pattern recognition receptors; CRRK: cysteine-rich receptor-like kinase; LRRK: leucine-rich receptor-like kinase; STK: serine threonine kinase; BAK1: brassinosteroid insensitive 1-associated receptor kinase1; MAPK: mitogen-activated protein kinase; JA: jasmonic acid; SA: salicylic acid; AUX: auxin; ABA: abscisic acid; ET: ethylene; GA: gibberella; CK: cytokinine; BR: brassinosteroid; CDPK: calcium-dependent protein kinase; ROS: reactive oxygen species."

[1] Naqvi S A H, Farhan M, Ahmad M, et al. Fungicide resistance in Fusarium species: exploring environmental impacts and sustainable management strategies. Arch Microbiol, 2025, 207: 31.
doi: 10.1007/s00203-024-04219-6
[2] Mesterházy Á, Lemmens M, Reid L M. Breeding for resistance to ear rots caused by Fusarium spp. in maize: a review. Plant Breed, 2012, 131: 1-19.
doi: 10.1111/pbr.2011.131.issue-1
[3] 宋立秋, 魏利民, 王振营, 等. 亚洲玉米螟与串珠镰孢菌复合侵染对玉米产量损失的影响. 植物保护学报, 2009, 36: 487-490.
Song L Q, Wei L M, Wang Z Y, et al. Effect of infestation by the Asian corn borer together with Fusarium verticillioides on corn yield loss. J Plant Prot, 2009, 36: 487-490 (in Chinese with English abstract).
[4] Duan C X, Qin Z H, Yang Z H, et al. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016, 8: 186.
doi: 10.3390/toxins8060186
[5] Wicklow D T, Rogers K D, Dowd P F, et al. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Fungal Biol, 2011, 115: 133-142.
doi: 10.1016/j.funbio.2010.11.003
[6] 夏玉生, 郭成, 温胜慧, 等. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报, 2022, 23: 61-71.
Xia Y S, Guo C, Wen S H, et al. Identification of maize germplasm resistant to Fusarium ear rot and Gibberella ear rot and genetic diversity analysis of resistant lines. J Plant Genet Resour, 2022, 23: 61-71 (in Chinese with English abstract).
[7] 段灿星, 王晓鸣, 宋凤景, 等. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152-2164.
doi: 10.3864/j.issn.0578-1752.2015.11.007
Duan C X, Wang X M, Song F J, et al. Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015, 48: 2152-2164 (in Chinese with English abstract).
[8] 秦子惠, 任旭, 江凯, 等. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41: 589-596.
Qin Z H, Ren X, Jiang K, et al. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. J Plant Prot, 2014, 41: 589-596 (in Chinese with English abstract).
[9] 孙华, 郭宁, 石洁, 等. 海南玉米穗腐病病原菌分离鉴定及优势种的遗传多样性分析. 植物病理学报, 2017, 47: 577-583.
doi: 10.13926/j.cnki.apps.000032
Sun H, Guo N, Shi J, et al. Characterization of the maize ear rot pathogens and genetic diversity analysis of dominant species in Hainan. Acta Phytopathol Sin, 2017, 47: 577-583 (in Chinese with English abstract).
doi: 10.13926/j.cnki.apps.000032
[10] 张小飞, 邹成佳, 崔丽娜, 等. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078-2082.
Zhang X F, Zou C J, Cui L N, et al. Identification of pathogen causing maize ear rot and inoculation technique in southwest China. Southwest China J Agric Sci, 2012, 25: 2078-2082 (in Chinese with English abstract).
[11] 郭满库, 王晓鸣, 何苏琴, 等. 2009年甘肃省玉米穗腐病、茎基腐病的发生危害. 植物保护, 2011, 37(4): 134-137.
Guo M K, Wang X M, He S Q, et al. Occurrence of maize kernel rot and corn stalk rot in Gansu in 2009. Plant Prot, 2011, 37(4): 134-137 (in Chinese with English abstract).
[12] 周丹妮, 王晓鸣, 李丹丹, 等. 重庆及周边地区玉米穗腐病致病镰孢菌的分离与鉴定. 植物保护学报, 2016, 43: 782-788.
Zhou D N, Wang X M, Li D D, et al. Isolation and identification of Fusarium species causing maize ear rot in Chongqing and its vicinity. J Plant Prot, 2016, 43: 782-788 (in Chinese with English abstract).
[13] 杜青, 唐照磊, 李石初, 等. 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019, 52: 1895-1907.
doi: 10.3864/j.issn.0578-1752.2019.11.005
Du Q, Tang Z L, Li S C, et al. Composition of Fusarium species causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Sci Agric Sin, 2019, 52: 1895-1907 (in Chinese with English abstract).
[14] 柴海燕, 贾娇, 白雪, 等. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性. 中国农业科学, 2023, 56: 64-78.
doi: 10.3864/j.issn.0578-1752.2023.01.005
Chai H Y, Jia J, Bai X, et al. Identification of pathogenic Fusarium spp. causing maize ear rot and susceptibility of some strains to fungicides in Jilin province. Sci Agric Sin, 2023, 56: 64-78 (in Chinese with English abstract).
[15] 纪武鹏, 王平. 黑龙江农垦玉米穗腐病发生情况调查. 农业科技通讯, 2021(7): 49-51.
Ji W P, Wang P. Investigation on the occurrence of maize ear rot in Heilongjiang Agricultural Reclamation. Bull Agric Sci Technol, 2021(7): 49-51 (in Chinese with English abstract).
[16] 王宝宝, 毕四刚, 肖明纲, 等. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163-174.
doi: 10.11686/cyxb2019198
Wang B B, Bi S G, Xiao M G, et al. Isolation and identification of pathogenic Fusarium spp. causing maize ear rot and analysis of their toxin-producing genotype in Heilongjiang province. Acta Pratac Sin, 2020, 29(1): 163-174 (in Chinese with English abstract).
[17] 程璐, 陈家斌, 张艺璇, 等. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44: 647-654.
Cheng L, Chen J B, Zhang Y X, et al. Research comparison of two dominant pathogens on maize ear rot. J Yunnan Univ (Nat Sci Edn), 2022, 44: 647-654 (in Chinese with English abstract).
[18] 石洁, 王振营, 何康来. 黄淮海地区夏玉米病虫害发生趋势与原因分析. 植物保护, 2005, 31(5): 63-65.
Shi J, Wang Z Y, He K L. Changes and occurrence trend of corn diseases and insect pests in Huang-Huai-Hai summer corn regions. Plant Prot, 2005, 31(5): 63-65 (in Chinese with English abstract).
[19] Yao L S, Li Y M, Ma C Y, et al. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol, 2020, 62: 1535-1551.
doi: 10.1111/jipb.v62.10
[20] 苏玉杰, 刘平丽, 高珂珂, 等. 玉米穗腐病研究进展. 黑龙江农业科学, 2024(9): 103-113.
Su Y J, Liu P L, Gao K K, et al. Research progress on ear rot in maize. Heilongjiang Agric Sci, 2024(9): 103-113 (in Chinese with English abstract).
[21] Duan C X, Wang B B, Sun F F, et al. Occurrence of maize ear rot caused by Fusarium fujikuroi in China. Plant Dis, 2020, 104: 587.
[22] 段灿星, 崔丽娜, 夏玉生, 等. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48: 2155-2167.
doi: 10.3724/SP.J.1006.2022.13055
Duan C X, Cui L N, Xia Y S, et al. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agron Sin, 2022, 48: 2155-2167 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13055
[23] 苏爱国, 王帅帅, 段赛茹, 等. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定. 植物遗传资源学报, 2021, 22: 971-978.
doi: 10.13430/j.cnki.jpgr.20210201004
Su A G, Wang S S, Duan S R, et al. Identification for ear rot resistance against Fusarium graminearum in maize germplasm. J Plant Genet Resour, 2021, 22: 971-978 (in Chinese with English abstract).
[24] Dinolfo M I, Martínez M, Castañares E, et al. Fusarium in maize during harvest and storage: a review of species involved, mycotoxins, and management strategies to reduce contamination. Eur J Plant Pathol, 2022, 164: 151-166.
doi: 10.1007/s10658-022-02548-0
[25] 刘素玲, 吴欣, 张百行, 等. 对两种病原菌引起的玉米穗粒腐病的抗性遗传及QTL定位研究可行性分析. 农业科技通讯, 2017(4): 17-19.
Liu S L, Wu X, Zhang B H, et al. Feasibility analysis of resistance inheritance and QTL mapping of maize ear rot caused by two pathogens. Bull Agric Sci Technol, 2017(4): 17-19 (in Chinese with English abstract).
[26] 姜妍, 刘延兴, 李人杰, 等. 密度、施肥、种植方式及杀虫剂处理对玉米穗腐病及伏马毒素污染的影响. 植物保护学报, 2019, 46: 693-698.
Jiang Y, Liu Y X, Li R J, et al. The influences of planting density, fertilizer level, tillage method and insecticide on maize ear rot and contamination of fumonisins. J Plant Prot, 2019, 46: 693-698 (in Chinese with English abstract).
[27] 丁梦军, 杨扬, 孙华, 等. 山东省玉米穗腐病病原菌的分离鉴定及优势种的系统发育分析. 华北农学报, 2019, 34(5): 216-223.
doi: 10.7668/hbnxb.201751508
Ding M J, Yang Y, Sun H, et al. Isolation and identification of maize ear rot pathogens and phylogenetic analysis of dominant species in Shandong province. Acta Agric Boreali-Sin, 2019, 34(5): 216-223 (in Chinese with English abstract).
[28] Liao X Y. Physical resistance: a different perspective on maize ear rot resistance. Plant Growth Regul, 2023, 100: 573-576.
doi: 10.1007/s10725-023-00960-y
[29] Ma P P, Liu E P, Zhang Z R, et al. Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides. Plant Biotechnol J, 2023, 21: 1812-1826.
doi: 10.1111/pbi.v21.9
[30] 黄长玲, 郑长庚. 高赖氨酸玉米对串珠镰刀菌穗腐病抗性遗传的初步研究. 作物学报, 1991, 17: 88-95.
Huang C L, Zheng C G. A preliminary study on the inheritance of the resistance of opaque-2 maize to ear rot caused by Fusarium moniliforme. Acta Agron Sin, 1991, 17: 88-95 (in Chinese with English abstract).
[31] Bottalico A, Perrone G. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-grain Cereals in Europe. Mycotoxins in Plant Disease. Dordrecht: Springer Netherlands, 2002. pp 611-624.
[32] Piacentini K C, Savi G D, Pereira M E V, et al. Fungi and the natural occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). Food Chem, 2015, 187: 204-209.
doi: 10.1016/j.foodchem.2015.04.101 pmid: 25977017
[33] Mahato D K, Devi S, Pandhi S, et al. Occurrence, impact on agriculture, human health, and management strategies of Zearalenone in food and feed: a review. Toxins, 2021, 13: 92.
doi: 10.3390/toxins13020092
[34] Musser S M, Plattner R D. Fumonisin composition in cultures of Fusarium moniliforme, Fusarium proliferatum, and Fusarium nygami. J Agric Food Chem, 1997, 45: 1169-1173.
doi: 10.1021/jf960663t
[35] Gelderblom W C, Abel S, Smuts C M, et al. Fumonisin- induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion. Environ Health Perspect, 2001, 109: 291-300.
[36] Rushing B R, Selim M I. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol, 2019, 124: 81-100.
doi: S0278-6915(18)30849-4 pmid: 30468841
[37] Zhou G F, Li S F, Ma L, et al. Mapping and validation of a stable quantitative trait locus conferring maize resistance to Gibberella ear rot. Plant Dis, 2021, 105: 1984-1991.
doi: 10.1094/PDIS-11-20-2487-RE
[38] Lanubile A, Maschietto V, Borrelli V M, et al. Molecular basis of resistance to Fusarium ear rot in maize. Front Plant Sci, 2017, 8: 1774.
doi: 10.3389/fpls.2017.01774
[39] 尹泽超, 王晓芳, 龙艳, 等. 玉米穗腐病抗性鉴定、遗传分析与分子机制. 中国生物工程杂志, 2021, 41(12): 103-115.
Yin Z C, Wang X F, Long Y, et al. Advances on genetic research and mechanism analysis on maize resistance to ear rot. China Biotechnol, 2021, 41(12): 103-115 (in Chinese with English abstract).
[40] Robertson-Hoyt L A, Jines M P, Balint-Kurti P J, et al. QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci, 2006, 46: 1734-1743.
doi: 10.2135/cropsci2005.12-0450
[41] Ding J Q, Wang X M, Chander S, et al. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed, 2008, 22: 395-403.
doi: 10.1007/s11032-008-9184-4
[42] Giomi G M, Kreff E D, Iglesias J, et al. Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm. Euphytica, 2016, 211: 287-294.
doi: 10.1007/s10681-016-1725-z
[43] Neupane S P, Stagnati L, Dell’Acqua M, et al. Genetic basis of Fusarium ear rot resistance and productivity traits in a heterozygous multi-parent recombinant inbred intercross (RIX) maize population. BMC Plant Biol, 2025, 25: 639.
doi: 10.1186/s12870-025-06684-7 pmid: 40375124
[44] Feng X J, Xiong H, Zheng D, et al. Identification of Fusarium verticillioides resistance alleles in three maize populations with teosinte gene introgression. Front Plant Sci, 2022, 13: 942397.
doi: 10.3389/fpls.2022.942397
[45] Butrón A, Santiago R, Cao A, et al. QTLs for resistance to Fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Dis, 2019, 103: 897-904.
doi: 10.1094/PDIS-09-18-1669-RE pmid: 30856072
[46] Wen J, Shen Y Q, Xing Y X, et al. QTL mapping of Fusarium ear rot resistance in maize. Plant Dis, 2021, 105: 558-565.
doi: 10.1094/PDIS-02-20-0411-RE
[47] Maschietto V, Colombi C, Pirona R, et al. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol, 2017, 17: 20.
doi: 10.1186/s12870-017-0970-1 pmid: 28109190
[48] Cao A N, de la Fuente M, Gesteiro N, et al. Genomics and pathways involved in maize resistance to Fusarium ear rot and kernel contamination with fumonisins. Front Plant Sci, 2022, 13: 866478.
doi: 10.3389/fpls.2022.866478
[49] Xia Y S, Wang B B, Zhu L H, et al. Identification of a Fusarium ear rot resistance gene in maize by QTL mapping and RNA sequencing. Front Plant Sci, 2022, 13: 954546.
doi: 10.3389/fpls.2022.954546
[50] Septiani P, Lanubile A, Stagnati L, et al. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Sci Rep, 2019, 9: 5665.
doi: 10.1038/s41598-019-42248-0 pmid: 30952942
[51] Chen J F, Ding J Q, Li H M, et al. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed, 2012, 30: 1649-1656.
doi: 10.1007/s11032-012-9748-1
[52] Chen J F, Shrestha R, Ding J Q, et al. Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3: Gene Genom Genet, 2016, 6: 3803-3815.
[53] Wu Y B, Zhou Z J, Dong C P, et al. Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. BMC Genomics, 2020, 21: 357.
doi: 10.1186/s12864-020-6733-7
[54] de Jong G, Pamplona A K A, Von Pinho R G, et al. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. Genomics, 2018, 110: 291-303.
doi: 10.1016/j.ygeno.2017.12.001
[55] Zila C T, Ogut F, Romay M C, et al. Genome-wide association study of Fusarium ear rot disease in the USA maize inbred line collection. BMC Plant Biol, 2014, 14: 372.
doi: 10.1186/s12870-014-0372-6
[56] Zila C T, Samayoa L F, Santiago R, et al. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3: Gene Genom Genet, 2013, 3: 2095-2104.
[57] Ayesiga S B, Rubaihayo P, Oloka B M, et al. Genome-wide association study and pathway analysis to decipher loci associated with Fusarium ear rot resistance in tropical maize germplasm. Genet Resour Crop Evol, 2024, 71: 2435-2448.
doi: 10.1007/s10722-023-01793-4
[58] Liu Y B, Hu G H, Zhang A, et al. Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J, 2021, 9: 325-341.
doi: 10.1016/j.cj.2020.08.008
[59] Stagnati L, Rahjoo V, Samayoa L F, et al. A genome-wide association study to understand the effect of Fusarium verticillioides infection on seedlings of a maize diversity panel. G3: Gene Genom Genet, 2020, 10: 1685-1696.
[60] Han S, Miedaner T, Utz H F, et al. Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica, 2017, 214: 6.
doi: 10.1007/s10681-017-2090-2
[61] Guo Z F, Zou C, Liu X G, et al. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Dis, 2020, 104: 1725-1735.
doi: 10.1094/PDIS-07-19-1552-RE
[62] 叶靓, 朱叶琳, 裴琳婧, 等. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因. 作物学报, 2024, 50: 2279-2296.
doi: 10.3724/SP.J.1006.2024.33049
Ye L, Zhu Y L, Pei L J, et al. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis. Acta Agron Sin, 2024, 50: 2279-2296 (in Chinese with English abstract).
[63] Galiano-Carneiro A L, Kessel B, Presterl T, et al. Multi-parent QTL mapping reveals stable QTL conferring resistance to Gibberella ear rot in maize. Euphytica, 2020, 217: 2.
doi: 10.1007/s10681-020-02748-x
[64] Yuan G S, Chen B F, Peng H, et al. QTL mapping for resistance to ear rot caused by Fusarium graminearum using an IBM Syn 10 DH population in maize. Mol Breed, 2020, 40: 91.
doi: 10.1007/s11032-020-01158-0
[65] Yuan G S, Li Y L, He D D, et al. A combination of QTL mapping and GradedPool-seq to dissect genetic complexity for Gibberella ear rot resistance in maize using an IBM Syn10 DH population. Plant Dis, 2023, 107: 1115-1121.
doi: 10.1094/PDIS-05-22-1183-RE
[66] Zhou G F, Ma L, Zhao C H, et al. Genome-wide association study and molecular marker development for susceptibility to Gibberella ear rot in maize. Theor Appl Genet, 2024, 137: 222.
doi: 10.1007/s00122-024-04711-z
[67] Yuan G S, He D D, Shi J X, et al. Genome-wide association study discovers novel germplasm resources and genetic loci with resistance to Gibberella ear rot caused by Fusarium graminearum. Phytopathology, 2023, 113: 1317-1324.
doi: 10.1094/PHYTO-09-22-0336-R
[68] Su A G, Xiao S L, Li Z Y, et al. Multi-omics analysis elucidates phased defense and resource allocation trade-offs in Fusarium resistance of maize. Plant Stress, 2025, 17: 100977.
doi: 10.1016/j.stress.2025.100977
[69] Pérez-Brito D, Jeffers D, González-De-León D, et al. QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, mexico. Agrocencia, 2001, 35, 181-196.
[70] Hao Z D, Lyu D K, Ge Y, et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci, 2020, 6: e251.
[71] Wang Y P, Zhou Z J, Gao J Y, et al. The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Front Plant Sci, 2016, 7: 1654.
[72] Campos-Bermudez V A, Fauguel C M, Tronconi M A, et al. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS One, 2013, 8: e61580.
[73] Yuan G S, Shi J H, Zeng C, et al. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium graminearum. BMC Genomics, 2024, 25: 733.
doi: 10.1186/s12864-024-10656-w
[74] Tran T N, Lanubile A, Marocco A, et al. Transcriptome profiling of eight Zea mays lines identifies genes responsible for the resistance to Fusarium verticillioides. BMC Plant Biol, 2024, 24: 1107.
doi: 10.1186/s12870-024-05697-y
[75] Lanubile A, Bernardi J, Battilani P, et al. Resistant and susceptible maize genotypes activate different transcriptional responses against Fusarium verticillioides. Physiol Mol Plant Pathol, 2012, 77: 52-59.
doi: 10.1016/j.pmpp.2011.12.002
[76] Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet, 2010, 11: 539-548.
doi: 10.1038/nrg2812 pmid: 20585331
[77] Singla P, Bhardwaj R D, Sharma S, et al. Plant-fungus interaction: a stimulus-response theory. J Plant Growth Regul, 2024, 43: 369-381.
doi: 10.1007/s00344-023-11100-1
[78] Cheng J J, Fan H, Li L, et al. Genome-wide identification and expression analyses of RPP13-like genes in barley. BioChip J, 2018, 12: 102-113.
doi: 10.1007/s13206-017-2203-y
[79] Gao Y A, Qu Q, Liu N, et al. Genome identification of the LRR-RLK gene family in maize (Zea mays) and expression analysis in response to Fusarium verticillioides infection. BMC Plant Biol, 2025, 25: 524.
doi: 10.1186/s12870-025-06495-w
[80] Lanubile A, Bernardi J, Marocco A, et al. Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium verticillioides. Environ Exp Bot, 2012, 78: 39-46.
doi: 10.1016/j.envexpbot.2011.12.006
[81] Lim G H, Singhal R, Kachroo A, et al. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol, 2017, 55: 505-536.
doi: 10.1146/phyto.2017.55.issue-1
[82] Gao X Q, Shim W B, Göbel C, et al. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol Plant Microbe Interact, 2007, 20: 922-933.
doi: 10.1094/MPMI-20-8-0922
[83] Battilani P, Lanubile A, Scala V, et al. Oxylipins from both pathogen and host antagonize jasmonic acid-mediated defence via the 9-lipoxygenase pathway in Fusarium verticillioides infection of maize. Mol Plant Pathol, 2018, 19: 2162-2176.
doi: 10.1111/mpp.12690 pmid: 29660236
[84] Ye J R, Zhong T, Zhang D F, et al. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant, 2019, 12: 360-373.
doi: S1674-2052(18)30310-1 pmid: 30853061
[85] Sampietro D A, Fauguel C M, Vattuone M A, et al. Phenylpropanoids from maize pericarp: resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur J Plant Pathol, 2013, 135: 105-113.
doi: 10.1007/s10658-012-0069-3
[86] Liao X Y, Sun J, Li Q Q, et al. ZmSIZ1a and ZmSIZ1b play an indispensable role in resistance against Fusarium ear rot in maize. Mol Plant Pathol, 2023, 24: 711-724.
doi: 10.1111/mpp.v24.7
[87] Ge C X, Tang C X, Zhu Y X, et al. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Gene, 2021, 764: 145078.
doi: 10.1016/j.gene.2020.145078
[88] Mohammadi M, Anoop V, Gleddie S, et al. Proteomic profiling of two maize inbreds during early Gibberella ear rot infection. PROTEOMICS, 2011, 11: 3675-3684.
doi: 10.1002/pmic.201100177 pmid: 21751381
[89] Maschietto V, Lanubile A, De Leonardis S, et al. Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides. J Plant Physiol, 2016, 200: 53-61.
doi: 10.1016/j.jplph.2016.06.006
[90] 渠清, 刘宁, 邹金鹏, 等. 拟轮枝镰孢与玉米籽粒互作的差异基因筛选及代谢通路分析. 中国农业科学, 2023, 56: 1086-1101.
doi: 10.3864/j.issn.0578-1752.2023.06.006
Qu Q, Liu N, Zou J P, et al. Screening of differential genes and analysis of metabolic pathways in the interaction between Fusarium verticillioides and maize kernels. Sci Agric Sin, 2023, 56: 1086-1101 (in Chinese with English abstract).
[91] Gao X Q, Brodhagen M, Isakeit T, et al. Kolomiets M V. Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact, 2009, 22: 222-231.
doi: 10.1094/MPMI-22-2-0222
[92] Alemu A, Åstrand J, Montesinos-López O A, et al. Genomic selection in plant breeding: key factors shaping two decades of progress. Mol Plant, 2024, 17: 552-578.
doi: 10.1016/j.molp.2024.03.007 pmid: 38475993
[93] Wang Z, Zhang H Q, Ye W C, et al. Development of a FER0.4K SNP array for genomic predication of Fusarium ear rot resistance in maize. Crop J, 2025, 13: 996-1002.
doi: 10.1016/j.cj.2025.03.007
[94] Holland J B, Marino T P, Manching H C, et al. Genomic prediction for resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci, 2020, 60: 1863-1875.
doi: 10.1002/csc2.20163
[95] Dong G G, Fan Z F. CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. Crop Health, 2024, 2: 2.
doi: 10.1007/s44297-023-00020-x
[96] Liu C L, Kong M, Zhu J J, et al. Engineering null mutants in ZmFER1 confers resistance to ear rot caused by Fusarium verticillioides in maize. Plant Biotechnol J, 2022, 20: 2045-2047.
doi: 10.1111/pbi.v20.11
[97] 王丽娟, 徐秀德, 刘志恒, 等. 玉米抗镰刀菌穗腐病接种方法及抗病资源筛选研究. 植物遗传资源学报, 2007, 8: 145-148.
Wang L J, Xu X D, Liu Z H, et al. Inoculation technique and screening maize germplasm resistance to Fusarium ear rot. J Plant Genet Resour, 2007, 8: 145-148 (in Chinese with English abstract).
[98] 韩宇琛, 韦翊君, 张震, 等. 玉米种质资源抗两种镰孢穗腐病的大规模鉴定. 植物遗传资源学报, 2024, 25: 1613-1626.
Han Y C, Wei Y J, Zhang Z, et al. Large-scale identification of maize germplasm resources for resistance to ear rot caused by two Fusarium species. J Plant Genet Resour, 2024, 25: 1613-1626 (in Chinese with English abstract).
[1] Wang Ting, Duan Wu-Li, Wang Rui, Liu Hai-Lan. Evolution and expression analysis of the choline monooxygenase gene family in plants [J]. Acta Agronomica Sinica, 2026, 52(1): 44-55.
[2] Dong Li-Hua, Dong Cheng-Yan, Li Zheng-Nan, Yu Jing, Ye Liang, Liu Fang, Tan Jing. Screening and identification of candidate resistance genes to gibberella ear rot caused by Fusarium graminearum in maize [J]. Acta Agronomica Sinica, 2026, 52(1): 131-147.
[3] Chen Xuan-Yi, Zhang Jian-Wei, Zhang Xiang-Qian, Ge Guo-Long, Lu Zhan-Yuan, Guo Xing-Xing, Ma Zi-Hui, Li Xin-Yi, Chen Li-Yu. Study on the impact of different soybean-maize strip intercropping patterns on the spatio-temporal dynamics of water and heat in maize strips and on maize yield and economic returns [J]. Acta Agronomica Sinica, 2026, 52(1): 178-190.
[4] Zhang Qing-Yi, Xiao Yi-Tao, Li Qiu-Xia, Zhang Yu-Shi, Zhang Ming-Cai, Li Zhao-Hu. Differences in ABA synthesis and physiological and biochemical responses of seedlings of different maize varieties under osmotic stress [J]. Acta Agronomica Sinica, 2026, 52(1): 221-232.
[5] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[6] JIANG Huan-Qi, DUAN Ao, GUO Chao, HUANG Xiao-Meng, AI De-Jun, LIU Xiao-Xue, TAN Jing-Yi, PENG Cheng-Lin, LI Man-Fei, DU He-Wei. Effects of waterlogging stress on root metabolism of maize seedlings [J]. Acta Agronomica Sinica, 2025, 51(9): 2295-2306.
[7] GAO Yuan, WANG Yu-Qi, JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin. Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize [J]. Acta Agronomica Sinica, 2025, 51(9): 2318-2329.
[8] ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340.
[9] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[10] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[11] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
[12] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[13] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[14] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[15] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!