Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 14-27.doi: 10.3724/SP.J.1006.2026.54037

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional study of the BnGCL1 gene in ramie (Boehmeria nivea L.) in response to drought stress

Liu Hai-Bo1,2(), Zhang Lei1,2, Wang Li-Qi1,2, Shi Xiao-Li1,2, Zhou Wen-Ying1,2, Cui Guo-Xian1,2,*(), She Wei1,2,*()   

  1. 1Ramie Research Institute of Hunan Agricultural University, Changsha 410128, Hunan, China
    2College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2025-03-18 Accepted:2025-10-30 Online:2026-01-12 Published:2025-11-05
  • Contact: *E-mail: weishe@hunau.edu.cn; E-mail: gx-cui@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Fibre, CARS-16-E11)

Abstract:

Drought is one of the major environmental stresses that affects plant growth and development. In this study, the functional role of the BnGCL1 gene in the drought stress response of ramie (Boehmeria nivea L.) was investigated. The results showed that the gene contains a maximum open reading frame (ORF) of 1581 bp, encoding a protein of 526 amino acids. The predicted protein has an isoelectric point of 5.79, a molecular weight of 59,123.98 Da, a fat index of 78.78, and an instability index of 37.42, indicating that it is a stable protein. BnGCL1 is expressed in the roots, stems, and leaves of ramie, and its expression is induced by drought stress. Under drought conditions, transgenic plants overexpressing BnGCL1 exhibited significantly greater root length, fresh weight, chlorophyll a, and chlorophyll b contents compared to wild-type plants. In addition, the activities of antioxidant enzymes such as APX and γ-GCL, as well as the levels of osmotic regulators including GSSG and Pro, were significantly altered. Overexpression of BnGCL1 also markedly upregulated the expression of drought-responsive genes, including AtGST1, AtGST11, AtNCED3, and AtWRKY40, suggesting that BnGCL1 enhances drought tolerance by modulating the antioxidant defense system and drought-responsive signaling pathways. Gene silencing experiments using VIGS technology further confirmed that suppression of BnGCL1 reduces drought tolerance in ramie, highlighting its critical role in drought response. This study reveals the important function of BnGCL1 under drought stress and provides a theoretical foundation for elucidating the molecular mechanisms of drought tolerance and for breeding drought-resistant ramie varieties.

Key words: Boehmeria nivea L., BnGCL1, drought stress, antioxidant enzymes, molecular mechanism

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
引物用途
Primer purpose
Actin-F1 GCTCCGTTGAACCCTAAG 苎麻内参引物
Boehmeria nivea L. reference gene
Actin-R1 GCTCCGATTGTGATGATTT
BnGCL1-F CGGCCAGTTTGAGCTTAGTG BnGCL1引物
BnGCL1 primer
BnGCL1-R TTCCTCGGCAACAGCTTTGA
VIGS-BnGCL1-F gtgagtaaggttaccgaattcATGGCACTCATTTCGCAGACA BnGCL1-VIGS引物
BnGCL1-VIGS primer
VIGS-BnGCL1-R cgtgagctcggtaccggatccTTAGTAGAGTAGCTCCTCAAAAACAGG
VIGS-BnPDS-F gtgagtaaggttaccgaattcCTCAAAAACTCAAACGACTCTTCG BnPDS-VIGS引物
BnPDS-VIGS primer
VIGS-BnPDS-R cgtgagctcggtaccggatccGTTTGTTAGCGGCTTCCTGC
AtACTIN8-F TCAGCACTTTCCAGCAGATG 拟南芥内参基因
AtACTIN8-R CTGTGGACAATGCCTGGAC Arabidopsis thaliana reference gene
AtGST1-F ACAAGAATTGCTCTGGCGGA AtGST1引物
AtGST1 primer
AtGST1-R CGGAGGGAAGGAGAGGGTTA
AtGST11-F ATGGCAGGAATCAAAGTTTT AtGST11引物
AtGST11 primer
AtGST11-R TTAAGAACCTTCTTAGCAGA
AtNCED3-F CTCAGCCGCCATTATCGTCT AtNCED3引物
AtNCED3 primer
AtNCED3-R GAGGAGTGTGAAGCGCAGAT
AtWRKY40-F TGGCTTAAACCGCCACATCT AtWRKY40引物
AtWRKY40 primer
AtWRKY40-R ATTCTTGACGTTGGGCTCGT
BnActin-F TCGAAGAGAGGTATCCTTAC 苎麻内参基因
BnActin-R CTCGTTGTAGAAAGTGTGAT Boehmeria nivea L. reference gene
BnGCL1-F AATTGGTTTCCAGCCTAAAT BnGCL1基因
BnGCL1-R TTTTGGCATGTAGTTTCTCA BnGCL1 primer

Fig. 1

Cloning of BnGCL1 gene M: DNA marker; 1, 2: cloning product of BnGCL1."

Fig. 2

Homology comparison of amino acid sequences between the BnGCL1 and GCL proteins from other plants Black indicates 100% sequence homology, pink indicates homology greater than 75%, and blue indicates homology greater than 50%."

Fig. 3

Phylogenetic tree of BnGCL1 and GCL proteins from other plants"

Fig. 4

Expression levels of BnGCL1 gene in ramie leaves under drought stress CK: untreated (no 20% PEG-200 simulated drought stress); 20% PEG: treated with 20% PEG-200 to simulate drought stress. Different lowercase letters on the error bars indicate significant differences at the 5% level."

Fig. 5

Growth of Arabidopsis thaliana after overexpressing BnGCL1 under drought stress Treatments are the same as those given in Fig. 4. WT: wild-type Arabidopsis strain; BnGCL1-OE5, BnGCL1-OE10: overexpressed Arabidopsis lines."

Fig. 6

Root length and fresh weight of Arabidopsis thaliana after overexpressing BnGCL1 under drought stress Treatments are the same as those given in Fig. 4. Abbreviations are the same as those given in Fig. 5. Different lowercase letters on the error bars indicate significant differences at the 5% level."

Fig. 7

Contents of chlorophyll a and chlorophyll b in BnGCL1-overexpressing Arabidopsis thaliana under drought stress Treatments are the same as those given in Fig. 4. Abbreviations are the same as those given in Fig. 5. Different lowercase letters on the error bars indicate significant differences at the 5% level."

Fig. 8

Antioxidant enzyme activities in BnGCL1-overexpressing Arabidopsis thaliana under drought stress A: superoxide dismutase (SOD) activity; B: content of malondialdehyde (MDA); C: content of hydrogen peroxide (H2O2); D: content of oxidized glutathione (GSSG); E: activity of ascorbic acid peroxidase (APX); F: γ-glutamyl cysteine synthase (γ-GCL) activity. Different lowercase letters on the error bars indicate significant differences at the 5% level. Treatments are the same as those given in Fig. 4. Abbreviations are the same as those given in Fig. 5."

Fig. 9

Proline (Pro) and glutathione (GSH) contents in BnGCL1-overexpressing Arabidopsis thaliana under drought stress Treatments are the same as those given in Fig. 4. Abbreviations are the same as those given in Fig. 5. Different lowercase letters on the error bars indicate significant differences at the 5% level."

Fig. 10

Expression levels of AtGST1, AtGST11, AtNCED3, and AtWRKY40 genes in BnGCL1-overexpressing Arabidopsis thaliana under drought stress Treatments are the same as those given in Fig. 4. Abbreviations are the same as those given in Fig. 5. Different lowercase letters on the error bars indicate significant differences at the 5% level."

Fig. 11

Verification of the drought resistance function of BnGCL1 using VIGS experiments A: whitening phenotype of pTRV::BnPDS lines. B: MDA content of VIGS silenced lines and control after normal treatment and drought treatment. C: relative expression levels of BnGCL1 gene between VIGS silent lines and control lines. D: the control group and VIGS silent lines under normal treatment. E: leaf phenotypes between control group and VIGS silent lines after seven days of drought treatment. F: leaf phenotypes between control group and VIGS silent lines after ten days of drought treatment. Scale = 2 cm. Different lowercase letters on the error bars indicate significant differences at the 5% level."

[1] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029
[2] Ma L J, Xing L H, Li Z C, et al. Epigenetic control of plant abiotic stress responses. J Genet Genom, 2025, 52: 129-144.
doi: 10.1016/j.jgg.2024.09.008
[3] Cramer G R, Urano K, Delrot S, et al. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol, 2011, 11: 163.
doi: 10.1186/1471-2229-11-163 pmid: 22094046
[4] Zeid I M, Shedeed Z A. Response of alfalfa to putrescine treatment under drought stress. Biol Plant, 2006, 50: 635-640.
doi: 10.1007/s10535-006-0099-9
[5] 张波, 郑长清, 林华如. 干旱胁迫下苎麻种质的抗旱生理与经济性状的研究. 中国麻作, 1997, 19(1): 26-30.
Zhang B, Zheng C Q, Lin H R. Study on drought-resistant physiological and economic characters of ramie germplasm under drought stress. China’s Fiber Crops, 1997, 19(1): 26-30 (in Chinese with English abstract).
[6] 全芮萍, 王昕慧, 刘婕仪, 等. 苎麻响应非生物胁迫的生理学研究进展. 中国麻业科学, 2022, 44: 183-189.
Quan R P, Wang X H, Liu J Y, et al. Research progress on the physiology of ramie in response to abiotic stress. Plant Fiber Sci China, 2022, 44: 183-189 (in Chinese with English abstract).
[7] 熊伟, 汤涤洛, 熊常财, 等. 山坡地种植苎麻水土保持效果研究. 中国水土保持, 2017(5): 63-66.
Xiong W, Tang D L, Xiong C C, et al. Study on soil and water conservation effect of planting ramie on hillside. Soil Water Conserv China, 2017(5): 63-66 (in Chinese with English abstract).
[8] Lu S C. Regulation of glutathione synthesis. Mol Aspects Med, 2009, 30: 42-59.
doi: 10.1016/j.mam.2008.05.005 pmid: 18601945
[9] Akram S, Siddiqui M N, Nahid Hussain B M, et al. Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul, 2017, 36: 877-888.
doi: 10.1007/s00344-017-9691-9
[10] Panda D, Mishra S S, Behera P K. Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Sci, 2021, 28: 119-132.
doi: 10.1016/j.rsci.2021.01.002
[11] Suliman M S E, Elradi S B M, Zhou G S, et al. Exogenous glutathione protected wheat seedling from high temperature and water deficit damages. Sci Rep, 2024, 14: 5304.
doi: 10.1038/s41598-023-47868-1 pmid: 38438398
[12] 吴法轩, 李秦, 杨昕, 等. 红麻HcKAN4基因克隆、表达及在类黄酮合成中的功能. 作物学报, 2024, 50: 645-655.
doi: 10.3724/SP.J.1006.2024.34084
Wu F X, Li Q, Yang X, et al. Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis. Acta Agron Sin, 2024, 50: 645-655 (in Chinese with English abstract).
[13] 冯涛, 王海月. 四种苹果属植物耐旱性比较研究. 湖北农业科学, 2018, 57(11): 59-61.
Feng T, Wang H Y. Comparative analysis on drought tolerance of four Malus species. Hubei Agric Sci, 2018, 57(11): 59-61 (in Chinese with English abstract).
[14] Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol, 2004, 136: 2621-2632.
[15] 李泽琴, 李锦涛, 邴杰, 等. 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析. 遗传, 2019, 41: 534-549.
Li Z Q, Li J T, Bing J, et al. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Hereditas (Beijing), 2019, 41: 534-549 (in Chinese with English abstract).
[16] 陈琴, 李多露, 高文举, 等. 陆地棉APX基因家族鉴定及抗旱性分析. 农业生物技术学报, 2021, 29: 1894-1903.
Chen Q, Li D L, Gao W J, et al. Identification and drought resistance analysis of APX gene family in Gossypium hirsutum. J Agric Biotechnol, 2021, 29: 1894-1903 (in Chinese with English abstract).
[17] 王润豪, 于永昂, 胡海燕, 等. 小麦抗坏血酸过氧化物酶TaAPX基因克隆与表达分析. 华北农学报, 2020, 35(2): 48-56.
doi: 10.7668/hbnxb.20190762
Wang R H, Yu Y A, Hu H Y, et al. Molecular cloning and expression pattern of TaAPX, ascorbic acid peroxidase gene in wheat. Acta Agric Boreali-Sin, 2020, 35(2): 48-56 (in Chinese with English abstract).
[18] 董守坤, 马玉玲, 李爽, 等. 干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响. 东北农业大学学报, 2018, 49(1): 10-18.
Dong S K, Ma Y L, Li S, et al. Effect of drought stress and re-watering on ascorbate-glutathionecycle of soybean. J Northeast Agric Univ, 2018, 49(1): 10-18 (in Chinese with English abstract).
[19] 黄国存, 崔四平, 马春红, 等. 干旱对小麦幼苗SOD活性和CaM水平的影响. 华北农学报, 1995, 10(1): 40-44.
doi: 10.3321/j.issn:1000-7091.1995.01.008
Huang G C, Cui S P, Ma C H, et al. Influence of water stress on SOD activities and calmodulin levels. Acta Agric Boreali-Sin, 1995, 10(1): 40-44 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.1995.01.008
[20] 马尧, 于漱琦. 水分胁迫下小麦幼苗SOD活性的变化及脂质过氧化作用. 农业与技术, 1998, 18(3): 18-19.
Ma Y, Yu S Q. The change of water stress on SOD activity and affect of lipid peroxidation induced in wheat seedling. Agric Technol, 1998, 18(3): 18-19 (in Chinese with English abstract).
[21] 戴高兴, 彭克勤, 萧浪涛, 等. 聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响. 中国水稻科学, 2006, 20: 557-559.
Dai G X, Peng K Q, Xiao L T, et al. Effect of drought stress simulated by PEG on malonaldehyde, proline contents and superoxide dismutase activity in low potassium tolerant rice seedlings. Chin J Rice Sci, 2006, 20: 557-559 (in Chinese with English abstract).
[22] 聂石辉, 齐军仓, 张海禄, 等. PEG-6000模拟干旱胁迫对大麦幼苗丙二醛含量及保护酶活性的影响. 新疆农业科学, 2011, 48(1): 11-17.
Nie S H, Qi J C, Zhang H L, et al. Effect of drought stress simulated by PEG-6000 on malondialdehyde content and activities of protective enzymes in barley seedlings. Xinjiang Agric Sci, 2011, 48(1): 11-17 (in Chinese with English abstract).
[23] 李雪凝, 董守坤, 刘丽君, 等. 干旱胁迫对春大豆超氧化物歧化酶活性和丙二醛含量的影响. 中国农学通报, 2016, 32(15): 93-97.
doi: 10.11924/j.issn.1000-6850.casb15110011
Li X N, Dong S K, Liu L J, et al. Effect of drought stress on SOD activity and MDA content of spring soybean. Chin Agric Sci Bull, 2016, 32(15): 93-97 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb15110011
[24] Zhang X, Takemiya A, Kinoshita T, et al. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant Cell Physiol, 2007, 48: 715-723.
pmid: 17389607
[25] Wang X Y, Li X M, Zhao W, et al. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies. Front Plant Sci, 2024, 15: 1371895.
doi: 10.3389/fpls.2024.1371895
[26] 王丽媛, 丁国华, 黎莉. 脯氨酸代谢的研究进展. 哈尔滨师范大学自然科学学报, 2010, 26(2): 84-89.
Wang L Y, Ding G H, Li L. Progress in synthesis and metabolism of proline. Nat Sci J Harbin Norm Univ, 2010, 26(2): 84-89 (in Chinese with English abstract).
[27] Delauney A J, Hu C A, Kishor P B, et al. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem, 1993, 268: 18673-18678.
pmid: 8103048
[28] Ahmed A A M, Roosens N, Dewaele E, et al. Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult, 2015, 122: 383-393.
doi: 10.1007/s11240-015-0776-5
[29] Sengupta D, Ramesh G, Mudalkar S, et al. Molecular cloning and characterization of γ-glutamyl cysteine synthetase (VrγECS) from roots of Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Plant Mol Biol Rep, 2012, 30: 894-903.
doi: 10.1007/s11105-011-0398-y
[30] 张勇, 张力, 杨佩民, 等. 刚毛柽柳ThγGCS基因克隆及表达分析. 分子植物育种, 2017, 15: 113-120.
Zhang Y, Zhang L, Yang P M, et al. Gene cloning and expression analysis of ThγGCS from Tamarix hispida. Mol Plant Breed, 2017, 15: 113-120 (in Chinese with English abstract).
[31] 张亚鹏. 马铃薯γ-谷氨酸半胱氨酸连接酶基因(StGCL)的克隆和转基因研究. 华南农业大学硕士学位论文, 广东广州, 2018.
Zhang Y P. Cloning and Transgenic Research of γ-glutamate Cysteine Ligase Gene (StGCL) in Potato. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2018 (in Chinese with English abstract).
[32] Forman H J, Zhang H Q, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med, 2009, 30: 1-12.
doi: 10.1016/j.mam.2008.08.006 pmid: 18796312
[33] Richman P G, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem, 1975, 250: 1422-1426.
pmid: 1112810
[34] Gupta S C, Goldsbrough P B. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol, 1991, 97: 306-312.
doi: 10.1104/pp.97.1.306 pmid: 16668386
[35] Chen J, Yang L B, Yan X X, et al. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol, 2016, 171: 707-719.
doi: 10.1104/pp.15.01882
[36] Nianiou-Obeidat I, Madesis P, Kissoudis C, et al. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep, 2017, 36: 791-805.
doi: 10.1007/s00299-017-2139-7 pmid: 28391528
[37] Cummins I, Dixon D P, Freitag-Pohl S, et al. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev, 2011, 43: 266-280.
doi: 10.3109/03602532.2011.552910 pmid: 21425939
[38] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1
[39] Wani S H, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J, 2016, 4: 162-176.
doi: 10.1016/j.cj.2016.01.010
[40] 车永梅, 孙艳君, 卢松冲, 等. AtWRKY40参与拟南芥干旱胁迫响应过程. 植物生理学报, 2018, 54: 456-464.
Che Y M, Sun Y J, Lu S C, et al. AtWRKY40 functions in drought stress response in Arabidopsis thaliana. Plant Physiol J, 2018, 54: 456-464 (in Chinese with English abstract).
[41] 王玲娟, 鲁帅, 高聪, 等. 拟南芥AtGST8的功能及其过表达植株对甲基紫精胁迫的响应. 南通大学学报(自然科学版), 2023, 22(1): 44-53.
Wang L J, Lu S, Gao C, et al. Function of AtGST8 gene and response of its over-expressed plants to MV stress in Arabidopsis thaliana. J Nantong Univ (Nat Sci Edn), 2023, 22(1): 44-53 (in Chinese with English abstract).
[42] Molinari M D C, Fuganti-Pagliarini R, Marin S R R, et al. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genet Mol Biol, 2020, 43: e20190292.
[43] Woo D H, Park H Y, Kang I S, et al. Arabidopsis lenc1 mutant displays reduced ABA accumulation by low AtNCED3 expression under osmotic stress. J Plant Physiol, 2011, 168: 140-147.
doi: 10.1016/j.jplph.2010.06.006
[44] Jiang J J, Ma S H, Ye N H, et al. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol, 2017, 59: 86-101.
doi: 10.1111/jipb.12513
[45] Chen X J, Li C, Wang H, et al. WRKY transcription factors: evolution, binding, and action. Phytopathol Res, 2019, 1: 13.
doi: 10.1186/s42483-019-0022-x
[46] 季娜娜, 闵德栋, 邵淑君, 等. VIGS载体在蔬菜作物中的应用研究进展. 植物生理学报, 2016, 52: 810-816.
Ji N N, Min D D, Shao S J, et al. Progress of research on application of VIGS vectors in vegetables. Plant Physiol J, 2016, 52: 810-816 (in Chinese with English abstract).
[47] 刘俊飞, 杨晓娟, 潘根, 等. 基于TRV病毒的工业大麻(Cannabis sativa L.) VIGS体系的优化. 中国麻业科学, 2023, 45: 197-205.
Liu J F, Yang X J, Pan G, et al. Optimization of hemp (Cannabis sativa L.) VIGS system based on TRV virus. Plant Fiber Sci China, 2023, 45: 197-205 (in Chinese with English abstract).
[1] Hu Cheng-Zhen, Gao Wei-Dong, Kong Bin-Xue, Wang Jian-Fei, Che Zhuo, Yang De-Long, Chen Tao. Genome-wide identification of the TaAPC11 gene family in wheat and functional characterization of TaAPC11-5B in drought stress responses [J]. Acta Agronomica Sinica, 2026, 52(1): 148-164.
[2] Wang Ya-Zhi, Yang Biao, Ji Xiang-Lin, Shi Ying, Zhang Li-Li. Identification of drought-resistant resources and preliminary screening of drought resistant genes in diploid potatoes [J]. Acta Agronomica Sinica, 2026, 52(1): 72-84.
[3] Kong Na, Liu Tao, Liu Wen-Ting, Chen Gang, Wen Li-Chao, Deng Zhi-Chao, Guo Mei, Li Wei, Guo Yong-Feng. Cloning of the NtCEP7 gene in tobacco and functional analysis of its encoded peptide in seedling-stage drought resistance [J]. Acta Agronomica Sinica, 2026, 52(1): 249-261.
[4] Zhang Qing-Yi, Xiao Yi-Tao, Li Qiu-Xia, Zhang Yu-Shi, Zhang Ming-Cai, Li Zhao-Hu. Differences in ABA synthesis and physiological and biochemical responses of seedlings of different maize varieties under osmotic stress [J]. Acta Agronomica Sinica, 2026, 52(1): 221-232.
[5] HE Peng-Xu, YAO Li-Rong, CHEN Yuan-Ling, YAN Yan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun. Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress [J]. Acta Agronomica Sinica, 2025, 51(9): 2412-2432.
[6] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[7] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[8] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[9] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[10] MA Qun, WANG Zhi-Hao, YAN Lei, LI Yu-Jiao, WANG Jia-Qi, LI Zhao, LIU Wei, AI Xin, MA Qian-Chi, WANG Xiao-Guang, ZHONG Chao, REN Jing-Yao, LIU Xi-Bo, ZHAO Shu-Li, ZHANG He, ZHAO Xin-Hua, JIANG Chun-Ji, WANG Jing, YU Hai-Qiu. Screening and evaluation system for drought resistance in high-oleic acid and common peanut at the germination stage [J]. Acta Agronomica Sinica, 2025, 51(12): 3266-3280.
[11] WEI Qi, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, TANG Huai-Jun, LIU Cheng, WANG Tian-Yu, LI Yu, LU Yun-Cai, LI Chun-Hui. Identifying of excellent drought-tolerant gene resources based on drought- tolerant maize inbred line SL001 [J]. Acta Agronomica Sinica, 2025, 51(12): 3171-3183.
[12] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[13] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[14] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[15] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!