Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 14-27.doi: 10.3724/SP.J.1006.2026.54037
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Liu Hai-Bo1,2(
), Zhang Lei1,2, Wang Li-Qi1,2, Shi Xiao-Li1,2, Zhou Wen-Ying1,2, Cui Guo-Xian1,2,*(
), She Wei1,2,*(
)
| [1] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029 |
| [2] |
Ma L J, Xing L H, Li Z C, et al. Epigenetic control of plant abiotic stress responses. J Genet Genom, 2025, 52: 129-144.
doi: 10.1016/j.jgg.2024.09.008 |
| [3] |
Cramer G R, Urano K, Delrot S, et al. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol, 2011, 11: 163.
doi: 10.1186/1471-2229-11-163 pmid: 22094046 |
| [4] |
Zeid I M, Shedeed Z A. Response of alfalfa to putrescine treatment under drought stress. Biol Plant, 2006, 50: 635-640.
doi: 10.1007/s10535-006-0099-9 |
| [5] | 张波, 郑长清, 林华如. 干旱胁迫下苎麻种质的抗旱生理与经济性状的研究. 中国麻作, 1997, 19(1): 26-30. |
| Zhang B, Zheng C Q, Lin H R. Study on drought-resistant physiological and economic characters of ramie germplasm under drought stress. China’s Fiber Crops, 1997, 19(1): 26-30 (in Chinese with English abstract). | |
| [6] | 全芮萍, 王昕慧, 刘婕仪, 等. 苎麻响应非生物胁迫的生理学研究进展. 中国麻业科学, 2022, 44: 183-189. |
| Quan R P, Wang X H, Liu J Y, et al. Research progress on the physiology of ramie in response to abiotic stress. Plant Fiber Sci China, 2022, 44: 183-189 (in Chinese with English abstract). | |
| [7] | 熊伟, 汤涤洛, 熊常财, 等. 山坡地种植苎麻水土保持效果研究. 中国水土保持, 2017(5): 63-66. |
| Xiong W, Tang D L, Xiong C C, et al. Study on soil and water conservation effect of planting ramie on hillside. Soil Water Conserv China, 2017(5): 63-66 (in Chinese with English abstract). | |
| [8] |
Lu S C. Regulation of glutathione synthesis. Mol Aspects Med, 2009, 30: 42-59.
doi: 10.1016/j.mam.2008.05.005 pmid: 18601945 |
| [9] |
Akram S, Siddiqui M N, Nahid Hussain B M, et al. Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul, 2017, 36: 877-888.
doi: 10.1007/s00344-017-9691-9 |
| [10] |
Panda D, Mishra S S, Behera P K. Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Sci, 2021, 28: 119-132.
doi: 10.1016/j.rsci.2021.01.002 |
| [11] |
Suliman M S E, Elradi S B M, Zhou G S, et al. Exogenous glutathione protected wheat seedling from high temperature and water deficit damages. Sci Rep, 2024, 14: 5304.
doi: 10.1038/s41598-023-47868-1 pmid: 38438398 |
| [12] |
吴法轩, 李秦, 杨昕, 等. 红麻HcKAN4基因克隆、表达及在类黄酮合成中的功能. 作物学报, 2024, 50: 645-655.
doi: 10.3724/SP.J.1006.2024.34084 |
| Wu F X, Li Q, Yang X, et al. Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis. Acta Agron Sin, 2024, 50: 645-655 (in Chinese with English abstract). | |
| [13] | 冯涛, 王海月. 四种苹果属植物耐旱性比较研究. 湖北农业科学, 2018, 57(11): 59-61. |
| Feng T, Wang H Y. Comparative analysis on drought tolerance of four Malus species. Hubei Agric Sci, 2018, 57(11): 59-61 (in Chinese with English abstract). | |
| [14] | Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol, 2004, 136: 2621-2632. |
| [15] | 李泽琴, 李锦涛, 邴杰, 等. 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析. 遗传, 2019, 41: 534-549. |
| Li Z Q, Li J T, Bing J, et al. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Hereditas (Beijing), 2019, 41: 534-549 (in Chinese with English abstract). | |
| [16] | 陈琴, 李多露, 高文举, 等. 陆地棉APX基因家族鉴定及抗旱性分析. 农业生物技术学报, 2021, 29: 1894-1903. |
| Chen Q, Li D L, Gao W J, et al. Identification and drought resistance analysis of APX gene family in Gossypium hirsutum. J Agric Biotechnol, 2021, 29: 1894-1903 (in Chinese with English abstract). | |
| [17] |
王润豪, 于永昂, 胡海燕, 等. 小麦抗坏血酸过氧化物酶TaAPX基因克隆与表达分析. 华北农学报, 2020, 35(2): 48-56.
doi: 10.7668/hbnxb.20190762 |
| Wang R H, Yu Y A, Hu H Y, et al. Molecular cloning and expression pattern of TaAPX, ascorbic acid peroxidase gene in wheat. Acta Agric Boreali-Sin, 2020, 35(2): 48-56 (in Chinese with English abstract). | |
| [18] | 董守坤, 马玉玲, 李爽, 等. 干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响. 东北农业大学学报, 2018, 49(1): 10-18. |
| Dong S K, Ma Y L, Li S, et al. Effect of drought stress and re-watering on ascorbate-glutathionecycle of soybean. J Northeast Agric Univ, 2018, 49(1): 10-18 (in Chinese with English abstract). | |
| [19] |
黄国存, 崔四平, 马春红, 等. 干旱对小麦幼苗SOD活性和CaM水平的影响. 华北农学报, 1995, 10(1): 40-44.
doi: 10.3321/j.issn:1000-7091.1995.01.008 |
|
Huang G C, Cui S P, Ma C H, et al. Influence of water stress on SOD activities and calmodulin levels. Acta Agric Boreali-Sin, 1995, 10(1): 40-44 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.1995.01.008 |
|
| [20] | 马尧, 于漱琦. 水分胁迫下小麦幼苗SOD活性的变化及脂质过氧化作用. 农业与技术, 1998, 18(3): 18-19. |
| Ma Y, Yu S Q. The change of water stress on SOD activity and affect of lipid peroxidation induced in wheat seedling. Agric Technol, 1998, 18(3): 18-19 (in Chinese with English abstract). | |
| [21] | 戴高兴, 彭克勤, 萧浪涛, 等. 聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响. 中国水稻科学, 2006, 20: 557-559. |
| Dai G X, Peng K Q, Xiao L T, et al. Effect of drought stress simulated by PEG on malonaldehyde, proline contents and superoxide dismutase activity in low potassium tolerant rice seedlings. Chin J Rice Sci, 2006, 20: 557-559 (in Chinese with English abstract). | |
| [22] | 聂石辉, 齐军仓, 张海禄, 等. PEG-6000模拟干旱胁迫对大麦幼苗丙二醛含量及保护酶活性的影响. 新疆农业科学, 2011, 48(1): 11-17. |
| Nie S H, Qi J C, Zhang H L, et al. Effect of drought stress simulated by PEG-6000 on malondialdehyde content and activities of protective enzymes in barley seedlings. Xinjiang Agric Sci, 2011, 48(1): 11-17 (in Chinese with English abstract). | |
| [23] |
李雪凝, 董守坤, 刘丽君, 等. 干旱胁迫对春大豆超氧化物歧化酶活性和丙二醛含量的影响. 中国农学通报, 2016, 32(15): 93-97.
doi: 10.11924/j.issn.1000-6850.casb15110011 |
|
Li X N, Dong S K, Liu L J, et al. Effect of drought stress on SOD activity and MDA content of spring soybean. Chin Agric Sci Bull, 2016, 32(15): 93-97 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb15110011 |
|
| [24] |
Zhang X, Takemiya A, Kinoshita T, et al. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant Cell Physiol, 2007, 48: 715-723.
pmid: 17389607 |
| [25] |
Wang X Y, Li X M, Zhao W, et al. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies. Front Plant Sci, 2024, 15: 1371895.
doi: 10.3389/fpls.2024.1371895 |
| [26] | 王丽媛, 丁国华, 黎莉. 脯氨酸代谢的研究进展. 哈尔滨师范大学自然科学学报, 2010, 26(2): 84-89. |
| Wang L Y, Ding G H, Li L. Progress in synthesis and metabolism of proline. Nat Sci J Harbin Norm Univ, 2010, 26(2): 84-89 (in Chinese with English abstract). | |
| [27] |
Delauney A J, Hu C A, Kishor P B, et al. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem, 1993, 268: 18673-18678.
pmid: 8103048 |
| [28] |
Ahmed A A M, Roosens N, Dewaele E, et al. Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult, 2015, 122: 383-393.
doi: 10.1007/s11240-015-0776-5 |
| [29] |
Sengupta D, Ramesh G, Mudalkar S, et al. Molecular cloning and characterization of γ-glutamyl cysteine synthetase (VrγECS) from roots of Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Plant Mol Biol Rep, 2012, 30: 894-903.
doi: 10.1007/s11105-011-0398-y |
| [30] | 张勇, 张力, 杨佩民, 等. 刚毛柽柳ThγGCS基因克隆及表达分析. 分子植物育种, 2017, 15: 113-120. |
| Zhang Y, Zhang L, Yang P M, et al. Gene cloning and expression analysis of ThγGCS from Tamarix hispida. Mol Plant Breed, 2017, 15: 113-120 (in Chinese with English abstract). | |
| [31] | 张亚鹏. 马铃薯γ-谷氨酸半胱氨酸连接酶基因(StGCL)的克隆和转基因研究. 华南农业大学硕士学位论文, 广东广州, 2018. |
| Zhang Y P. Cloning and Transgenic Research of γ-glutamate Cysteine Ligase Gene (StGCL) in Potato. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2018 (in Chinese with English abstract). | |
| [32] |
Forman H J, Zhang H Q, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med, 2009, 30: 1-12.
doi: 10.1016/j.mam.2008.08.006 pmid: 18796312 |
| [33] |
Richman P G, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem, 1975, 250: 1422-1426.
pmid: 1112810 |
| [34] |
Gupta S C, Goldsbrough P B. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol, 1991, 97: 306-312.
doi: 10.1104/pp.97.1.306 pmid: 16668386 |
| [35] |
Chen J, Yang L B, Yan X X, et al. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol, 2016, 171: 707-719.
doi: 10.1104/pp.15.01882 |
| [36] |
Nianiou-Obeidat I, Madesis P, Kissoudis C, et al. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep, 2017, 36: 791-805.
doi: 10.1007/s00299-017-2139-7 pmid: 28391528 |
| [37] |
Cummins I, Dixon D P, Freitag-Pohl S, et al. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev, 2011, 43: 266-280.
doi: 10.3109/03602532.2011.552910 pmid: 21425939 |
| [38] |
Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1 |
| [39] |
Wani S H, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J, 2016, 4: 162-176.
doi: 10.1016/j.cj.2016.01.010 |
| [40] | 车永梅, 孙艳君, 卢松冲, 等. AtWRKY40参与拟南芥干旱胁迫响应过程. 植物生理学报, 2018, 54: 456-464. |
| Che Y M, Sun Y J, Lu S C, et al. AtWRKY40 functions in drought stress response in Arabidopsis thaliana. Plant Physiol J, 2018, 54: 456-464 (in Chinese with English abstract). | |
| [41] | 王玲娟, 鲁帅, 高聪, 等. 拟南芥AtGST8的功能及其过表达植株对甲基紫精胁迫的响应. 南通大学学报(自然科学版), 2023, 22(1): 44-53. |
| Wang L J, Lu S, Gao C, et al. Function of AtGST8 gene and response of its over-expressed plants to MV stress in Arabidopsis thaliana. J Nantong Univ (Nat Sci Edn), 2023, 22(1): 44-53 (in Chinese with English abstract). | |
| [42] | Molinari M D C, Fuganti-Pagliarini R, Marin S R R, et al. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genet Mol Biol, 2020, 43: e20190292. |
| [43] |
Woo D H, Park H Y, Kang I S, et al. Arabidopsis lenc1 mutant displays reduced ABA accumulation by low AtNCED3 expression under osmotic stress. J Plant Physiol, 2011, 168: 140-147.
doi: 10.1016/j.jplph.2010.06.006 |
| [44] |
Jiang J J, Ma S H, Ye N H, et al. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol, 2017, 59: 86-101.
doi: 10.1111/jipb.12513 |
| [45] |
Chen X J, Li C, Wang H, et al. WRKY transcription factors: evolution, binding, and action. Phytopathol Res, 2019, 1: 13.
doi: 10.1186/s42483-019-0022-x |
| [46] | 季娜娜, 闵德栋, 邵淑君, 等. VIGS载体在蔬菜作物中的应用研究进展. 植物生理学报, 2016, 52: 810-816. |
| Ji N N, Min D D, Shao S J, et al. Progress of research on application of VIGS vectors in vegetables. Plant Physiol J, 2016, 52: 810-816 (in Chinese with English abstract). | |
| [47] | 刘俊飞, 杨晓娟, 潘根, 等. 基于TRV病毒的工业大麻(Cannabis sativa L.) VIGS体系的优化. 中国麻业科学, 2023, 45: 197-205. |
| Liu J F, Yang X J, Pan G, et al. Optimization of hemp (Cannabis sativa L.) VIGS system based on TRV virus. Plant Fiber Sci China, 2023, 45: 197-205 (in Chinese with English abstract). |
| [1] | Hu Cheng-Zhen, Gao Wei-Dong, Kong Bin-Xue, Wang Jian-Fei, Che Zhuo, Yang De-Long, Chen Tao. Genome-wide identification of the TaAPC11 gene family in wheat and functional characterization of TaAPC11-5B in drought stress responses [J]. Acta Agronomica Sinica, 2026, 52(1): 148-164. |
| [2] | Wang Ya-Zhi, Yang Biao, Ji Xiang-Lin, Shi Ying, Zhang Li-Li. Identification of drought-resistant resources and preliminary screening of drought resistant genes in diploid potatoes [J]. Acta Agronomica Sinica, 2026, 52(1): 72-84. |
| [3] | Kong Na, Liu Tao, Liu Wen-Ting, Chen Gang, Wen Li-Chao, Deng Zhi-Chao, Guo Mei, Li Wei, Guo Yong-Feng. Cloning of the NtCEP7 gene in tobacco and functional analysis of its encoded peptide in seedling-stage drought resistance [J]. Acta Agronomica Sinica, 2026, 52(1): 249-261. |
| [4] | Zhang Qing-Yi, Xiao Yi-Tao, Li Qiu-Xia, Zhang Yu-Shi, Zhang Ming-Cai, Li Zhao-Hu. Differences in ABA synthesis and physiological and biochemical responses of seedlings of different maize varieties under osmotic stress [J]. Acta Agronomica Sinica, 2026, 52(1): 221-232. |
| [5] | HE Peng-Xu, YAO Li-Rong, CHEN Yuan-Ling, YAN Yan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun. Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress [J]. Acta Agronomica Sinica, 2025, 51(9): 2412-2432. |
| [6] | LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214. |
| [7] | WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887. |
| [8] | YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754. |
| [9] | HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666. |
| [10] | MA Qun, WANG Zhi-Hao, YAN Lei, LI Yu-Jiao, WANG Jia-Qi, LI Zhao, LIU Wei, AI Xin, MA Qian-Chi, WANG Xiao-Guang, ZHONG Chao, REN Jing-Yao, LIU Xi-Bo, ZHAO Shu-Li, ZHANG He, ZHAO Xin-Hua, JIANG Chun-Ji, WANG Jing, YU Hai-Qiu. Screening and evaluation system for drought resistance in high-oleic acid and common peanut at the germination stage [J]. Acta Agronomica Sinica, 2025, 51(12): 3266-3280. |
| [11] | WEI Qi, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, TANG Huai-Jun, LIU Cheng, WANG Tian-Yu, LI Yu, LU Yun-Cai, LI Chun-Hui. Identifying of excellent drought-tolerant gene resources based on drought- tolerant maize inbred line SL001 [J]. Acta Agronomica Sinica, 2025, 51(12): 3171-3183. |
| [12] | LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166. |
| [13] | LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761. |
| [14] | QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583. |
| [15] | HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755. |
|
||