Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 148-164.doi: 10.3724/SP.J.1006.2026.51029
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Hu Cheng-Zhen1,2(
), Gao Wei-Dong1,2, Kong Bin-Xue1,3, Wang Jian-Fei1,2, Che Zhuo1, Yang De-Long1,2,*(
), Chen Tao1,2,*(
)
| [1] |
Levy A A, Feldman M. Evolution and origin of bread wheat. Plant Cell, 2022, 34: 2549-2567.
doi: 10.1093/plcell/koac130 |
| [2] |
Yao Y, Guo W, Gou J, et al. Wheat2035: integrating pan-omics and advanced biotechnology for future wheat design. Mol Plant, 2025, 18: 272-297.
doi: 10.1016/j.molp.2025.01.005 |
| [3] |
Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol, 2014, 164: 354-372.
pmid: 25540461 |
| [4] |
Martínez-Férriz A, Ferrando A, Fathinajafabadi A, et al. Ubiquitin- mediated mechanisms of translational control. Semin Cell Dev Biol, 2022, 132: 146-154.
doi: 10.1016/j.semcdb.2021.12.009 |
| [5] | Xiong E H, Qu X L, Li J F, et al. The soybean ubiquitin-proteasome system: current knowledge and future perspective. Plant Genome, 2023, 16: e20281. |
| [6] |
Zhang J L, Li C N, Li L, et al. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014-5025.
doi: 10.1093/jxb/erad226 |
| [7] |
Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42: 2931-2944.
doi: 10.1111/pce.v42.10 |
| [8] |
Al-Saharin R, Hellmann H, Mooney S. Plant E3 ligases and their role in abiotic stress response. Cells, 2022, 11: 890.
doi: 10.3390/cells11050890 |
| [9] |
Wang R Y, You X M, Zhang C Y, et al. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol, 2022, 23: 154.
doi: 10.1186/s13059-022-02717-8 pmid: 35821048 |
| [10] |
Barroso-Gomila O, Merino-Cacho L, Muratore V, et al. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun, 2023, 14: 7656.
doi: 10.1038/s41467-023-43326-8 pmid: 37996419 |
| [11] |
de Oliveira P N, da Silva L F C, Eloy N B. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. Front Plant Sci, 2022, 13: 987919.
doi: 10.3389/fpls.2022.987919 |
| [12] |
Heyman J, De Veylder L. The anaphase-promoting complex/ cyclosome in control of plant development. Mol Plant, 2012, 5: 1182-1194.
doi: 10.1093/mp/sss094 pmid: 23034505 |
| [13] |
Guo L, Jiang L, Zhang Y, et al. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. Plant J, 2016, 86: 161-174.
doi: 10.1111/tpj.2016.86.issue-2 |
| [14] |
You J, Xiao W W, Zhou Y, et al. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice. Plant Cell, 2022, 34: 4313-4328.
doi: 10.1093/plcell/koac232 |
| [15] |
Lin Q B, Zhang Z, Wu F Q, et al. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell, 2020, 32: 1973-1987.
doi: 10.1105/tpc.20.00101 |
| [16] |
Schwedersky R P, de Lyra Soriao Saleme M, Rocha I A, et al. The anaphase promoting complex/cyclosome subunit 11 and its role in organ size and plant development. Front Plant Sci, 2021, 12: 563760.
doi: 10.3389/fpls.2021.563760 |
| [17] |
Xu J, Liu H J, Zhou C, et al. The ubiquitin-proteasome system in the plant response to abiotic stress: potential role in crop resilience improvement. Plant Sci, 2024, 342: 112035.
doi: 10.1016/j.plantsci.2024.112035 |
| [18] |
Wang J N, Zhang T Y, Tu A Z, et al. Genome-wide identification and analysis of APC E 3 ubiquitin ligase genes family in Triticum aestivum. Genes (Basel), 2024, 15: 271.
doi: 10.3390/genes15030271 |
| [19] |
Bao Z L, Yang H J, Hua J. Perturbation of cell cycle regulation triggers plant immune response via activation of disease resistance genes. Proc Natl Acad Sci USA, 2013, 110: 2407-2412.
doi: 10.1073/pnas.1217024110 pmid: 23345424 |
| [20] |
覃碧, 王肖肖, 杨玉双, 等. 橡胶草TkAPC10基因的鉴定及其表达模式分析. 植物研究, 2022, 42: 830-839.
doi: 10.7525/j.issn.1673-5102.2022.05.014 |
| Qin B, Wang X X, Yang Y S, et al. Identification and expression pattern analysis of TkAPC10in Taraxacum kok-saghyz Rodin. Bull Bot Res, 2022, 42: 830-839 (in Chinese with English abstract). | |
| [21] |
Zhang P P, Zhang L H, Chen T, et al. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899-2913.
doi: 10.1007/s11033-021-07105-2 |
| [22] | Finn R D, Mistry J, Schuster-Böckler B, et al. Pfam: clans, web tools and services. Nucleic Acids Res, 2006, 34: D247-D251. |
| [23] | Eddy S R. Accelerated profile HMM searches. PLoS Comput Biol, 2011, 7: e1002195. |
| [24] | Marchler-Bauer A, Derbyshire M K, Gonzales N R, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222-D226. |
| [25] | Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: D458-D460. |
| [26] |
Youn J H, Kim T W. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant, 2015, 8: 552-565.
doi: 10.1016/j.molp.2014.12.006 |
| [27] | Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335. |
| [28] | Xie J M, Chen Y R, Cai G J, et al. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592. |
| [29] |
Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
| [30] |
Pan X P, Zhang B H. Identification of stable reference genes for toxicogenomic and gene expression analysis. Methods Mol Biol, 2021, 2326: 67-94.
doi: 10.1007/978-1-0716-1514-0_6 pmid: 34097262 |
| [31] |
Wang Y P, Li J P, Paterson A H. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics, 2013, 29: 1458-1460.
doi: 10.1093/bioinformatics/btt150 pmid: 23539305 |
| [32] |
Zhang Z, Li J, Zhao X Q, et al. KaKs_Calculator: calculating Kaand Ks through model selection and model averaging. Genom Proteom Bioinform, 2006, 4: 259-263.
doi: 10.1016/S1672-0229(07)60007-2 |
| [33] |
Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172-2186.
doi: 10.1104/pp.15.01667 pmid: 26869702 |
| [34] |
Oleson A E, Sasakuma M. S1 nuclease of Aspergillus oryzae: a glycoprotein with an associated nucleotidase activity. Arch Biochem Biophys, 1980, 204: 361-370.
pmid: 6252849 |
| [35] | Chen T, Miao Y P, Jing F L, et al. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). Plant Genome, 2024, 17: e20480. |
| [36] |
Dong F Y, Liu Y D, Zhang H D, et al. TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis. BMC Plant Biol, 2025, 25: 59.
doi: 10.1186/s12870-025-06091-y |
| [37] |
杨利, 王波, 李文姣, 等. 干旱胁迫下ROS的产生、清除及信号转导研究进展. 生物技术通报, 2021, 37(4): 194-203.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0804 |
| Yang L, Wang B, Li W J, et al. Research progress on production, scavenging and signal transduction of ROS under drought stress. Biotechnol Bull, 2021, 37(4): 194-203 (in Chinese with English abstract). | |
| [38] |
de Freitas Lima M, Eloy N B, Bottino M C, et al. Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep, 2013, 40: 7093-7102.
doi: 10.1007/s11033-013-2832-8 |
| [39] |
Xu C, Wang Y H, Yu Y C, et al. Degradation of MONOCULM 1 by APC/C (TAD1) regulates rice tillering. Nat Commun, 2012, 3: 750.
doi: 10.1038/ncomms1743 |
| [40] |
Sun J Q, Huang S Y, Lu Q, et al. UV-B irradiation-activated E 3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun, 2023, 14: 6262.
doi: 10.1038/s41467-023-41824-3 |
| [41] |
Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 2017, 86: 129-157.
doi: 10.1146/annurev-biochem-060815-014922 pmid: 28375744 |
| [42] |
Ma J H, Wang Y D, Tang X X, et al. TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.). Plant Cell Environ, 2023, 46: 3760-3774.
doi: 10.1111/pce.v46.12 |
| [43] |
Li S M, Zhang Y F, Liu Y L, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605-625.
doi: 10.1093/plcell/koad307 |
| [44] |
Gao W D, Zhang L, Zhang Y Y, et al. Genome-wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC Plant Biol, 2024, 24: 341.
doi: 10.1186/s12870-024-05042-3 |
| [45] |
He F, Wang H L, Li H G, et al. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J, 2018, 16: 1514-1528.
doi: 10.1111/pbi.12893 pmid: 29406575 |
| [46] |
Wang N, Liu Y P, Cong Y H, et al. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57: 1189-1209.
doi: 10.1093/pcp/pcw068 |
| [47] |
Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0 |
| [48] |
Sun C X, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 2003, 15: 2076-2092.
doi: 10.1105/tpc.014597 pmid: 12953112 |
| [49] | 李淑敏. 泛素E3连接酶TaGW2调控小麦抗逆性的分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2023. |
| Li S M. The Molecular Mechanism of E3 Ubiqutin Ligase TaGW2 in Regulating Wheat Stress Resistance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract). | |
| [50] |
Qi X H, Tang X, Liu W G, et al. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. Plant Physiol Biochem, 2020, 146: 438-446.
doi: 10.1016/j.plaphy.2019.11.042 |
| [51] | Poggi G M, Corneti S, Aloisi I. The quest for reliable drought stress screening in tetraploid wheat (Triticum turgidum Spp.) seedlings: why MDA quantification after treatment with 10% PEG-6000 falls short. Life (Basel), 2024, 14: 517. |
| [52] | Kim J H, Cho A Y, Lim S D, et al. Mutation of a RING E 3 ligase, OsDIRH2, enhances drought tolerance in rice with low stomata density. Physiol Plant, 2024, 176: e14565. |
| [53] |
Li J J, Li Y, Yin Z G, et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J, 2017, 15: 183-196.
doi: 10.1111/pbi.2017.15.issue-2 |
| [54] |
Wang B X, Li L Q, Liu M L, et al. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J, 2022, 112: 722-737.
doi: 10.1111/tpj.v112.3 |
| [55] |
Du B, Nie N, Sun S F, et al. A novel sweetpotato RING-H 2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Sci, 2021, 304: 110802.
doi: 10.1016/j.plantsci.2020.110802 |
| [56] |
Yang H, Zhang Y, Lyu S W, et al. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. J Integr Plant Biol, 2025, 67: 1274-1289.
doi: 10.1111/jipb.13845 |
| [1] | Wang Ya-Zhi, Yang Biao, Ji Xiang-Lin, Shi Ying, Zhang Li-Li. Identification of drought-resistant resources and preliminary screening of drought resistant genes in diploid potatoes [J]. Acta Agronomica Sinica, 2026, 52(1): 72-84. |
| [2] | Ma Ting-Ting, Guo Xiao-Jiang, Li Hao, Deng Mei, Pu Zhi-En, Li Wei, Zhang Ya-Zhou, Wang Feng-Tao, Cui Feng-Juan, Wei Yu-Ming, Wang Ji-Rui, Jiang Yun-Feng, Chen Guo-Yue. Breeding strategy for synergistic improvement of yield, disease resistance, and stress tolerance in Shumai 753 using the wheat landrace Xiaoganmai [J]. Acta Agronomica Sinica, 2026, 52(1): 56-71. |
| [3] | Liu Di, Li Rui-Yuan, Shi Mao-Zhu, Li Hong-You, Chen Qing-Fu, Shi Tao-Xiong. Phenotypic characterization and transcriptomic analysis of the semi-dwarf mutant sd3 in Tartary buckwheat [J]. Acta Agronomica Sinica, 2026, 52(1): 316-328. |
| [4] | Kong Na, Liu Tao, Liu Wen-Ting, Chen Gang, Wen Li-Chao, Deng Zhi-Chao, Guo Mei, Li Wei, Guo Yong-Feng. Cloning of the NtCEP7 gene in tobacco and functional analysis of its encoded peptide in seedling-stage drought resistance [J]. Acta Agronomica Sinica, 2026, 52(1): 249-261. |
| [5] | Liu Hai-Bo, Zhang Lei, Wang Li-Qi, Shi Xiao-Li, Zhou Wen-Ying, Cui Guo-Xian, She Wei. Functional study of the BnGCL1 gene in ramie (Boehmeria nivea L.) in response to drought stress [J]. Acta Agronomica Sinica, 2026, 52(1): 14-27. |
| [6] | LI Yun-Xiang, GUO Qian-Qian, HOU Wan-Wei, ZHANG Xiao-Juan. Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA [J]. Acta Agronomica Sinica, 2025, 51(9): 2387-2398. |
| [7] | HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386. |
| [8] | YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484. |
| [9] | LI Lu-Qi, CHENG Yu-Kun, BAI Bin, LEI Bin, GENG Hong-Wei. Genome-wide association analysis of stomatal-related traits in wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(9): 2266-2284. |
| [10] | HE Peng-Xu, YAO Li-Rong, CHEN Yuan-Ling, YAN Yan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun. Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress [J]. Acta Agronomica Sinica, 2025, 51(9): 2412-2432. |
| [11] | KONG De-Zhen, SANG Wei, NIE Ying-Bin, LI Wei, XU Hong-Jun, LI Jiang-Bo, LIU Peng-Peng, TIAN Xiao-Ming. Comparative analysis of metabolite changes during young panicle development in wheat AL type cytoplasmic male serile line and homologous maintainers [J]. Acta Agronomica Sinica, 2025, 51(9): 2454-2466. |
| [12] | YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219. |
| [13] | ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127. |
| [14] | YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203. |
| [15] | SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175. |
|
||