Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 148-164.doi: 10.3724/SP.J.1006.2026.51029

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification of the TaAPC11 gene family in wheat and functional characterization of TaAPC11-5B in drought stress responses

Hu Cheng-Zhen1,2(), Gao Wei-Dong1,2, Kong Bin-Xue1,3, Wang Jian-Fei1,2, Che Zhuo1, Yang De-Long1,2,*(), Chen Tao1,2,*()   

  1. 1State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3Agronomy College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2025-03-13 Accepted:2025-08-13 Online:2026-01-12 Published:2025-08-22
  • Contact: *E-mail: yangd1@gsau.edu.cn; E-mail: chent@gsau.edu.cn
  • Supported by:
    Breakthrough Project in Seed Industry of Gansu Province Department of Agriculture and Rural Affairs(GYGG-2024-2);Innovative Research Group Project of Gansu Province(24JRRA633);Key Science and Technology Special Project of Gansu Province(22ZD6NA009);National Natural Science Foundation of China(32360518);National Natural Science Foundation of China(32260520);National Natural Science Foundation of China(32160487);Key Cultivation Project of University Research and Innovation Platform of Gansu Province(2024CXPT-01);Development Fund Project of National Guiding Local Science and Technology(23ZYQA0322);Industrial Support Plan of Colleges and Universities in Gansu Province(2022CYZC-44);Gansu Provincial Education Department Young Doctor Support Project(2024QB-062);Open Fund for the State Key Laboratory of Crop Science in Arid Habitat Jointly Established by the Ministry of Provinces and China(GSCS-2023-07);Key Research and Development Program of Gansu Province(25YFWA020);Graduate Innovation Star Project 2025 of Gansu Provincial Education Department, China(2025CXZX-853)

Abstract:

The anaphase-promoting complex/cyclosome (APC/C), a multi-subunit cullin-RING-type E3 ubiquitin ligase, regulates cell cycle progression by ubiquitinating specific target proteins via its RING domain-containing subunit, APC11, thereby contributing to plant responses to abiotic stress. In this study, we performed a genome-wide identification of the TaAPC11 gene family in wheat using bioinformatics approaches, with a particular focus on elucidating the biological function of TaAPC11-5B in drought stress regulation. A total of 23 TaAPC11 members were identified in the wheat genome and classified into three subfamilies, all exhibiting conserved gene structures and motifs. Synteny analysis revealed that segmental duplications, driven by purifying selection, contributed to the expansion of the TaAPC11 family. Cis-acting element analysis indicated an abundance of abiotic stress-responsive elements in the promoters of TaAPC11 genes. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that transcripts of TaAPC11-5B, 6A2, 4D1, and 3B2 were significantly up-regulated by PEG-6000 and ABA treatments, with TaAPC11-5B exhibiting the strongest response under PEG-6000-induced drought stress. Comparative analysis between wild-type (WT) and TaAPC11-5B-overexpressing rice lines (TaAPC11-5B-OE) under PEG-6000 treatment demonstrated that the overexpression lines had significantly higher survival rates, increased plant height, and a reduced leaf rolling index compared to WT plants. Physiological assays further revealed that TaAPC11-5B-OE plants exhibited lower relative electrolyte leakage and malondialdehyde (MDA) content, but higher proline accumulation under drought conditions. Moreover, DAB (3,3'-diaminobenzidine) and NBT (nitroblue tetrazolium) staining, along with antioxidant enzyme activity assays, showed that TaAPC11-5B-OE plants accumulated less hydrogen peroxide (H2O2) and superoxide anion ($\mathrm{O}_{2}^{\bar{.}}$) while displaying enhanced activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). Collectively, these results suggest that TaAPC11- 5B enhances drought tolerance by modulating reactive oxygen species (ROS) scavenging. This study provides a theoretical basis and genetic resource for further understanding the drought-responsive mechanisms mediated by TaAPC11-5B in wheat.

Key words: wheat, drought stress, gene family, TaAPC11-5B, expression pattern, drought-tolerance validation

Table S1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
TaAPC11-5B-qF TGGCTTCTTGGACATGGGAC TaAPC11s荧光定量PCR
TaAPC11s fluorescent quantitative PCR
TaAPC11-5B-qR ATTGGGCACTCATCACCAGG
TaAPC11-6A2-qF GCCGTAACCACATCATGGAC
TaAPC11-6A2-qR GTCTTGAGCCAACGGCTGAT
TaAPC11-4D1-qF GGAAGGTGCTGACGACTTGA
TaAPC11-4D1-qR GTAAGGACCCCCGGACTTTG
TaAPC11-3B2-qF CTAGAAGGGCTCAGAAGCGG
TaAPC11-3B2-qR TGATTCCGGTGGTGCTTCAG
TaACTIN-F AAATCTGGCATCACACTTTCTAC 小麦qRT-PCR内参[44]
qRT-PCR internal reference gene of wheat
TaACTIN-R GTCTCAAACATAATCTGGGTCATC
TaAPC11-5B-CDS-F ATGAAGGTCAAAATTCTTCAGTGG TaAPC11-5B基因克隆
Cloning of TaAPC11-5B
TaAPC11-5B-CDS-R GCCCTTGAACTGCCACTCC
TaAPC11-5B-eGFP-F GGACGAGCTCGGTACCATGAAGGTCAAAATTCTTCAGTGG 亚细胞定位载体构建
Construction of subcellular localization vector
TaAPC11-5B-eGFP-R CATGTCGACTCTAGAGGATCCGCCCTTGAACTGCCACTCC
TaAPC11-5B-pBWA(V)HS-F CAGTGGTCTCACAACATGAAGGTCAAAATTCTTCAGTGG 过表达载体构建
Construction of overexpression vector
TaAPC11-5B-pBWA(V)HS-R CAGTGGTCTCAAATCGCCCTTGAACTGCCACTCC
TaAPC11-5B-DNA-F TGGCTTCTTGGACATGGGAC 异源表达水稻鉴定
Identification of heterologous expression in rice
TaAPC11-5B-DNA-R ATTGGGCACTCATCACCAGG
OsACTIN-F CACAGGTATTGTGTTGGACTCTG 水稻RT-PCR内参
RT-PCR internal reference gene of rice
OsACTIN-R AGTAACCACGCTCCGTCAGG

Table S2

Information of wheat TaAPC11 gene family"

亚家族
Subgroups
基因名称
Gene name
基因ID
Gene ID
基因位置
Gene location
(bp)
分子量
Molecular weight (kD)
等电点
PI
亚细胞定位
Subcellular location
Group I TaAPC11-3A1 TraesCS3A02G001800.1 3A: 1312499-1316465 13.28299 5.90 细胞核Nucleus
Group I TaAPC11-3B1 TraesCS3B02G000800.1 3B: 986709-990613 13.46014 5.90 细胞核Nucleus
Group I TaAPC11-4A1 TraesCS4A02G118100.1 4A: 144626397-144626753 9.67526 6.85 细胞核Nucleus
Group I TaAPC11-4D2 TraesCS4D02G187600.1 4D: 326383255-326383611 9.68731 6.85 细胞核Nucleus
Group I TaAPC11-Un1 TraesCSU02G056200.1 Un: 43320677-43325049 13.24898 5.90 细胞核Nucleus
Group I TaAPC11-5A TraesCS5A02G476600.1 5A: 651436974-651437330 9.66325 6.85 细胞核Nucleus
Group I TaAPC11-5B TraesCS5B02G489500.1 5B: 659411504-659411860 9.66325 6.85 细胞核Nucleus
Group I TaAPC11-6A1 TraesCS6A02G145300.2 6A: 123454742-123461449 54.07585 5.46 细胞质Cytoplasm
Group I TaAPC11-6A2 TraesCS6A02G274400.1 6A: 501180582-501184201 12.89871 6.49 细胞膜Cell membrane
Group I TaAPC11-6B1 TraesCS6B02G173500.2 6B: 187838088-187844402 53.64835 5.44 细胞质Cytoplasm
Group I TaAPC11-6B2 TraesCS6B02G301900.1 6B: 541151164-541155111 12.91274 6.49 细胞膜Cell membrane
Group I TaAPC11-6D1 TraesCS6D02G134300.1 6D: 102121509-102127928 54.29110 5.40 细胞质Cytoplasm
Group I TaAPC11-6D2 TraesCS6D02G254700.1 6D: 359522869-359526478 12.91274 6.49 细胞膜Cell membrane
Group II TaAPC11-3A2 TraesCS3A02G491300.1 3A: 718398638-718402223 28.98575 6.33 细胞质Cytoplasm
Group II TaAPC11-3B2 TraesCS3B02G552300.1 3B: 786853771-786857486 30.03499 6.61 细胞质Cytoplasm
Group II TaAPC11-3D TraesCS3D02G497200.1 3D: 588393115-588396671 29.17200 6.33 细胞质Cytoplasm
Group III TaAPC11-2A TraesCS2A02G248400.1 2A: 371043878-371047760 38.54422 5.32 细胞膜Cell membrane
Group III TaAPC11-2B TraesCS2B02G268800.1 2B: 364133612-364137957 38.60633 5.17 细胞膜Cell membrane
Group III TaAPC11-2D TraesCS2D02G250100.1 2D: 297597480-297601524 38.59930 5.18 细胞膜Cell membrane
Group III TaAPC11-4A2 TraesCS4A02G165300.1 4A: 389228758-389255404 39.42518 5.91 细胞膜Cell membrane
Group III TaAPC11-4D1 TraesCS4D02G158400.1 4D: 221300172-221304251 42.04510 5.68 细胞膜Cell membrane
Group III TaAPC11-Un2 TraesCSU02G068700.1 Un: 56920551-56927031 42.09423 5.78 细胞膜Cell membrane

Fig. 1

Phylogenetic analysis of APC11s in O. sativa, A. thaliana, and T. aestivum"

Fig. 2

Phylogenetic relationships(A), gene structure(B), and conserved motifs (C) of TaAPC11s in wheat"

Fig. 3

Chromosomal distribution and synteny analysis of TaAPC11 genes in wheat A: chromosomal locations of the TaAPC11 genes in wheat. B: co-linearity analysis of TaAPC11 in the wheat genome. C: co-linearity analysis of TaAPC11 with Arabidopsis and rice genome."

Table S3

TaAPC11 gene duplication events in wheat"

片段复制
Segmental duplication
非同义替换率
Ka
同义替换率
Ks
比值
Ka/Ks
TaAPC11-2A TaAPC11-2B 0.008556678 0.015712522 0.544577005
TaAPC11-2A TaAPC11-2D 0.006101315 0.019699097 0.309725615
TaAPC11-2B TaAPC11-2D 0.004877570 0.019692631 0.247685048
TaAPC11-3A2 TaAPC11-3B2 0.016939839 0.078154545 0.216747977
TaAPC11-3A1 TaAPC11-3B1 0.007321596 0.150125188 0.048769935
TaAPC11-3A2 TaAPC11-3D 0.010624595 0.070296993 0.151138686
TaAPC11-3B2 TaAPC11-3D 0.011675010 0.104107945 0.112143314
TaAPC11-3B1 TaAPC11-Un1 0 0.042067100 0
TaAPC11-4A1 TaAPC11-4D2 0.004954601 0.063195258 0.078401469
TaAPC11-5A TaAPC11-5B 0.004958696 0.041389812 0.119804743
TaAPC11-5A TaAPC11-5D 0.004958696 0.062974035 0.078741909
TaAPC11-5B TaAPC11-5D 0 0.062974035 0
TaAPC11-6A2 TaAPC11-6B2 0.003640784 0.042464170 0.085737783
TaAPC11-6A1 TaAPC11-6B1 0.006271970 0.039937768 0.157043568
TaAPC11-6A2 TaAPC11-6D2 0.003642994 0.042364202 0.085992283
TaAPC11-6A1 TaAPC11-6D1 0.009844276 0.045991418 0.214045930
TaAPC11-6B2 TaAPC11-6D2 0 0.071997686 0
TaAPC11-6B1 TaAPC11-6D1 0.010778629 0.040009486 0.269401830

Fig. 4

Cis-element analysis of the TaAPC11 gene family in wheat"

Fig. 5

Expression analysis of TaAPC11s genes in wheat under different treatments A: expression heatmap of TaAPC11 genes under drought and NaCl stress treatments. B: qRT-PCR analysis of TaAPC11 genes under PEG-6000 treatment. C: qRT-PCR analysis of TaAPC11 genes under mannitol treatment. D: qRT-PCR analysis of TaAPC11 genes under NaCl treatment. E: qRT-PCR analysis of TaAPC11 genes under ABA treatment. Data are shown as the mean ± SD (n = 3). Different lowercase letters indicate significant differences at P < 0.05."

Fig. S1

Expression analysis of TaAPC11 genes in different tissues of wheat"

Fig. 6

Amplification of TaAPC11-5B gene in wheat"

Fig. 7

Subcellular localization of TaAPC11-5B A: subcellular localization of TaAPC11-5B in wheat protoplasts. B: subcellular localization of TaAPC11-5B in tobacco leaves. Bars in A and B are 10 μm and 20 μm, respectively."

Fig. 8

Identification of the TaAPC11-5B gene in transgenic rice A: PCR detection of transgenic rice plants DNA. B: semi-RT-PCR analysis of transgenic rice. P: PCR amplification using the recombinant vector pBWA (V) HU-TaAPC11-5B as positive control for transgenic rice identification."

Fig. 9

Drought tolerance analysis of TaAPC11-5B-OE and WT plants after 15 days of drought treatment A: TaAPC11-5B-OE and WT plants after fifteen days of drought treatment. Bars: 5 cm. B: changes in soil water content during drought treatment. C: qRT-PCR analysis of TaAPC11-5B expression under drought stress. Different lowercase letters indicate significant differences at P < 0.05. D: survival rates of TaAPC11-5B-OE and WT plants under drought treatment. The data is presented as mean ± SD (n = 3), and ** indicates significant differences between TaAPC11-5B-OE and WT plants under the same treatment based on one-way ANOVA tests (P < 0.01)."

Fig. 10

Drought tolerance evaluation of TaAPC11-5B-OE and WT plants under 20% PEG-6000 treatment A: TaAPC11-5B-OE and WT plants after 20% PEG-6000 treatment. bars: 5 cm. B: effect of 20% PEG-6000 treatment on leaf rolling index in TaAPC11-5B-OE and WT plants. C: effect of 20% PEG-6000 treatment on plant height in TaAPC11-5B-OE and WT plants. D: effect of 20% PEG-6000 treatment on relative electrolytic leakage in TaAPC11-5B-OE and WT plants. E: effect of 20% PEG-6000 treatment on malondialdehyde content in TaAPC11-5B-OE and WT plants. F: effect of 20% PEG-6000 treatment on proline content in TaAPC11-5B-OE and WT plants. Data are presented as mean ± SD (n = 3). Asterisks indicate significant differences between TaAPC11-5B-OE and WT plants under the same treatment based on one-way ANOVA tests (*: P < 0.05; **: P < 0.01)."

Fig. 11

Oxidative staining and antioxidant enzyme activities of TaAPC11-5B-OE and WT plants after 20% PEG-6000 treatment A: NBT staining of TaAPC11-5B-OE and WT leaves. B: DAB staining of TaAPC11-5B-OE and WT leaves. C: CAT activity of TaAPC11-5B-OE and WT plants. D: POD activity of TaAPC11-5B-OE and WT plants. E: SOD activity of TaAPC11-5B-OE and WT plants. DAB: 3,3'-diaminobenzidine; NBT: nitrotetrazolium blue chloride. Data are presented as mean ± SD (n = 3). Asterisks indicate significant differences between TaAPC11-5B-OE and WT plants under the same treatment based on one-way ANOVA tests (*: P < 0.05; **: P < 0.01)."

[1] Levy A A, Feldman M. Evolution and origin of bread wheat. Plant Cell, 2022, 34: 2549-2567.
doi: 10.1093/plcell/koac130
[2] Yao Y, Guo W, Gou J, et al. Wheat2035: integrating pan-omics and advanced biotechnology for future wheat design. Mol Plant, 2025, 18: 272-297.
doi: 10.1016/j.molp.2025.01.005
[3] Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol, 2014, 164: 354-372.
pmid: 25540461
[4] Martínez-Férriz A, Ferrando A, Fathinajafabadi A, et al. Ubiquitin- mediated mechanisms of translational control. Semin Cell Dev Biol, 2022, 132: 146-154.
doi: 10.1016/j.semcdb.2021.12.009
[5] Xiong E H, Qu X L, Li J F, et al. The soybean ubiquitin-proteasome system: current knowledge and future perspective. Plant Genome, 2023, 16: e20281.
[6] Zhang J L, Li C N, Li L, et al. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014-5025.
doi: 10.1093/jxb/erad226
[7] Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42: 2931-2944.
doi: 10.1111/pce.v42.10
[8] Al-Saharin R, Hellmann H, Mooney S. Plant E3 ligases and their role in abiotic stress response. Cells, 2022, 11: 890.
doi: 10.3390/cells11050890
[9] Wang R Y, You X M, Zhang C Y, et al. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol, 2022, 23: 154.
doi: 10.1186/s13059-022-02717-8 pmid: 35821048
[10] Barroso-Gomila O, Merino-Cacho L, Muratore V, et al. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun, 2023, 14: 7656.
doi: 10.1038/s41467-023-43326-8 pmid: 37996419
[11] de Oliveira P N, da Silva L F C, Eloy N B. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. Front Plant Sci, 2022, 13: 987919.
doi: 10.3389/fpls.2022.987919
[12] Heyman J, De Veylder L. The anaphase-promoting complex/ cyclosome in control of plant development. Mol Plant, 2012, 5: 1182-1194.
doi: 10.1093/mp/sss094 pmid: 23034505
[13] Guo L, Jiang L, Zhang Y, et al. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. Plant J, 2016, 86: 161-174.
doi: 10.1111/tpj.2016.86.issue-2
[14] You J, Xiao W W, Zhou Y, et al. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice. Plant Cell, 2022, 34: 4313-4328.
doi: 10.1093/plcell/koac232
[15] Lin Q B, Zhang Z, Wu F Q, et al. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell, 2020, 32: 1973-1987.
doi: 10.1105/tpc.20.00101
[16] Schwedersky R P, de Lyra Soriao Saleme M, Rocha I A, et al. The anaphase promoting complex/cyclosome subunit 11 and its role in organ size and plant development. Front Plant Sci, 2021, 12: 563760.
doi: 10.3389/fpls.2021.563760
[17] Xu J, Liu H J, Zhou C, et al. The ubiquitin-proteasome system in the plant response to abiotic stress: potential role in crop resilience improvement. Plant Sci, 2024, 342: 112035.
doi: 10.1016/j.plantsci.2024.112035
[18] Wang J N, Zhang T Y, Tu A Z, et al. Genome-wide identification and analysis of APC E 3 ubiquitin ligase genes family in Triticum aestivum. Genes (Basel), 2024, 15: 271.
doi: 10.3390/genes15030271
[19] Bao Z L, Yang H J, Hua J. Perturbation of cell cycle regulation triggers plant immune response via activation of disease resistance genes. Proc Natl Acad Sci USA, 2013, 110: 2407-2412.
doi: 10.1073/pnas.1217024110 pmid: 23345424
[20] 覃碧, 王肖肖, 杨玉双, 等. 橡胶草TkAPC10基因的鉴定及其表达模式分析. 植物研究, 2022, 42: 830-839.
doi: 10.7525/j.issn.1673-5102.2022.05.014
Qin B, Wang X X, Yang Y S, et al. Identification and expression pattern analysis of TkAPC10in Taraxacum kok-saghyz Rodin. Bull Bot Res, 2022, 42: 830-839 (in Chinese with English abstract).
[21] Zhang P P, Zhang L H, Chen T, et al. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899-2913.
doi: 10.1007/s11033-021-07105-2
[22] Finn R D, Mistry J, Schuster-Böckler B, et al. Pfam: clans, web tools and services. Nucleic Acids Res, 2006, 34: D247-D251.
[23] Eddy S R. Accelerated profile HMM searches. PLoS Comput Biol, 2011, 7: e1002195.
[24] Marchler-Bauer A, Derbyshire M K, Gonzales N R, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222-D226.
[25] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: D458-D460.
[26] Youn J H, Kim T W. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant, 2015, 8: 552-565.
doi: 10.1016/j.molp.2014.12.006
[27] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.
[28] Xie J M, Chen Y R, Cai G J, et al. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
[29] Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[30] Pan X P, Zhang B H. Identification of stable reference genes for toxicogenomic and gene expression analysis. Methods Mol Biol, 2021, 2326: 67-94.
doi: 10.1007/978-1-0716-1514-0_6 pmid: 34097262
[31] Wang Y P, Li J P, Paterson A H. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics, 2013, 29: 1458-1460.
doi: 10.1093/bioinformatics/btt150 pmid: 23539305
[32] Zhang Z, Li J, Zhao X Q, et al. KaKs_Calculator: calculating Kaand Ks through model selection and model averaging. Genom Proteom Bioinform, 2006, 4: 259-263.
doi: 10.1016/S1672-0229(07)60007-2
[33] Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172-2186.
doi: 10.1104/pp.15.01667 pmid: 26869702
[34] Oleson A E, Sasakuma M. S1 nuclease of Aspergillus oryzae: a glycoprotein with an associated nucleotidase activity. Arch Biochem Biophys, 1980, 204: 361-370.
pmid: 6252849
[35] Chen T, Miao Y P, Jing F L, et al. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). Plant Genome, 2024, 17: e20480.
[36] Dong F Y, Liu Y D, Zhang H D, et al. TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis. BMC Plant Biol, 2025, 25: 59.
doi: 10.1186/s12870-025-06091-y
[37] 杨利, 王波, 李文姣, 等. 干旱胁迫下ROS的产生、清除及信号转导研究进展. 生物技术通报, 2021, 37(4): 194-203.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0804
Yang L, Wang B, Li W J, et al. Research progress on production, scavenging and signal transduction of ROS under drought stress. Biotechnol Bull, 2021, 37(4): 194-203 (in Chinese with English abstract).
[38] de Freitas Lima M, Eloy N B, Bottino M C, et al. Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep, 2013, 40: 7093-7102.
doi: 10.1007/s11033-013-2832-8
[39] Xu C, Wang Y H, Yu Y C, et al. Degradation of MONOCULM 1 by APC/C (TAD1) regulates rice tillering. Nat Commun, 2012, 3: 750.
doi: 10.1038/ncomms1743
[40] Sun J Q, Huang S Y, Lu Q, et al. UV-B irradiation-activated E 3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun, 2023, 14: 6262.
doi: 10.1038/s41467-023-41824-3
[41] Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 2017, 86: 129-157.
doi: 10.1146/annurev-biochem-060815-014922 pmid: 28375744
[42] Ma J H, Wang Y D, Tang X X, et al. TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.). Plant Cell Environ, 2023, 46: 3760-3774.
doi: 10.1111/pce.v46.12
[43] Li S M, Zhang Y F, Liu Y L, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605-625.
doi: 10.1093/plcell/koad307
[44] Gao W D, Zhang L, Zhang Y Y, et al. Genome-wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC Plant Biol, 2024, 24: 341.
doi: 10.1186/s12870-024-05042-3
[45] He F, Wang H L, Li H G, et al. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J, 2018, 16: 1514-1528.
doi: 10.1111/pbi.12893 pmid: 29406575
[46] Wang N, Liu Y P, Cong Y H, et al. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57: 1189-1209.
doi: 10.1093/pcp/pcw068
[47] Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0
[48] Sun C X, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 2003, 15: 2076-2092.
doi: 10.1105/tpc.014597 pmid: 12953112
[49] 李淑敏. 泛素E3连接酶TaGW2调控小麦抗逆性的分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2023.
Li S M. The Molecular Mechanism of E3 Ubiqutin Ligase TaGW2 in Regulating Wheat Stress Resistance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[50] Qi X H, Tang X, Liu W G, et al. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. Plant Physiol Biochem, 2020, 146: 438-446.
doi: 10.1016/j.plaphy.2019.11.042
[51] Poggi G M, Corneti S, Aloisi I. The quest for reliable drought stress screening in tetraploid wheat (Triticum turgidum Spp.) seedlings: why MDA quantification after treatment with 10% PEG-6000 falls short. Life (Basel), 2024, 14: 517.
[52] Kim J H, Cho A Y, Lim S D, et al. Mutation of a RING E 3 ligase, OsDIRH2, enhances drought tolerance in rice with low stomata density. Physiol Plant, 2024, 176: e14565.
[53] Li J J, Li Y, Yin Z G, et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J, 2017, 15: 183-196.
doi: 10.1111/pbi.2017.15.issue-2
[54] Wang B X, Li L Q, Liu M L, et al. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J, 2022, 112: 722-737.
doi: 10.1111/tpj.v112.3
[55] Du B, Nie N, Sun S F, et al. A novel sweetpotato RING-H 2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Sci, 2021, 304: 110802.
doi: 10.1016/j.plantsci.2020.110802
[56] Yang H, Zhang Y, Lyu S W, et al. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. J Integr Plant Biol, 2025, 67: 1274-1289.
doi: 10.1111/jipb.13845
[1] Wang Ya-Zhi, Yang Biao, Ji Xiang-Lin, Shi Ying, Zhang Li-Li. Identification of drought-resistant resources and preliminary screening of drought resistant genes in diploid potatoes [J]. Acta Agronomica Sinica, 2026, 52(1): 72-84.
[2] Ma Ting-Ting, Guo Xiao-Jiang, Li Hao, Deng Mei, Pu Zhi-En, Li Wei, Zhang Ya-Zhou, Wang Feng-Tao, Cui Feng-Juan, Wei Yu-Ming, Wang Ji-Rui, Jiang Yun-Feng, Chen Guo-Yue. Breeding strategy for synergistic improvement of yield, disease resistance, and stress tolerance in Shumai 753 using the wheat landrace Xiaoganmai [J]. Acta Agronomica Sinica, 2026, 52(1): 56-71.
[3] Liu Di, Li Rui-Yuan, Shi Mao-Zhu, Li Hong-You, Chen Qing-Fu, Shi Tao-Xiong. Phenotypic characterization and transcriptomic analysis of the semi-dwarf mutant sd3 in Tartary buckwheat [J]. Acta Agronomica Sinica, 2026, 52(1): 316-328.
[4] Kong Na, Liu Tao, Liu Wen-Ting, Chen Gang, Wen Li-Chao, Deng Zhi-Chao, Guo Mei, Li Wei, Guo Yong-Feng. Cloning of the NtCEP7 gene in tobacco and functional analysis of its encoded peptide in seedling-stage drought resistance [J]. Acta Agronomica Sinica, 2026, 52(1): 249-261.
[5] Liu Hai-Bo, Zhang Lei, Wang Li-Qi, Shi Xiao-Li, Zhou Wen-Ying, Cui Guo-Xian, She Wei. Functional study of the BnGCL1 gene in ramie (Boehmeria nivea L.) in response to drought stress [J]. Acta Agronomica Sinica, 2026, 52(1): 14-27.
[6] LI Yun-Xiang, GUO Qian-Qian, HOU Wan-Wei, ZHANG Xiao-Juan. Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA [J]. Acta Agronomica Sinica, 2025, 51(9): 2387-2398.
[7] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[8] YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484.
[9] LI Lu-Qi, CHENG Yu-Kun, BAI Bin, LEI Bin, GENG Hong-Wei. Genome-wide association analysis of stomatal-related traits in wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(9): 2266-2284.
[10] HE Peng-Xu, YAO Li-Rong, CHEN Yuan-Ling, YAN Yan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun. Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress [J]. Acta Agronomica Sinica, 2025, 51(9): 2412-2432.
[11] KONG De-Zhen, SANG Wei, NIE Ying-Bin, LI Wei, XU Hong-Jun, LI Jiang-Bo, LIU Peng-Peng, TIAN Xiao-Ming. Comparative analysis of metabolite changes during young panicle development in wheat AL type cytoplasmic male serile line and homologous maintainers [J]. Acta Agronomica Sinica, 2025, 51(9): 2454-2466.
[12] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[13] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[14] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[15] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!