Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 316-328.doi: 10.3724/SP.J.1006.2026.51043

• RESEARCH NOTES • Previous Articles    

Phenotypic characterization and transcriptomic analysis of the semi-dwarf mutant sd3 in Tartary buckwheat

Liu Di1(), Li Rui-Yuan2, Shi Mao-Zhu1, Li Hong-You1, Chen Qing-Fu1, Shi Tao-Xiong1,*()   

  1. 1College of Life Sciences, Guizhou Normal University / Guizhou Buckwheat Engineering Technology Research Center, Guiyang 550025, Guizhou, China
    2Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang 550025, Guizhou, China
  • Received:2025-05-05 Accepted:2025-09-11 Online:2026-01-12 Published:2025-09-19
  • Contact: *E-mail: shitaoxiong@gznu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32260489);China Agriculture Research System of MOF and MARA(CARS-07-A5);Guizhou Provincial Key Laboratory of Biology and Breeding for Specialty Crops(QKHPT ZSYS [2025] 026)

Abstract:

Plant height is a key agronomic trait in Tartary buckwheat, closely associated with lodging resistance, photosynthetic efficiency, and yield formation. Dwarfism is generally advantageous for enhancing lodging resistance and thereby improving yield. To explore dwarf stem gene resources, and to provide a theoretical basis for understanding plant height development and its application in breeding, we conducted phenotypic characterization and transcriptomic analysis of the semi-dwarf mutant sd3, previously generated through EMS mutagenesis. The results showed that compared with the wild type, the plant height of the sd3 at the mature stage reduced 28.43%, and the number of nodes on the main stem decreased by 44.44%. The reduction in node number was the primary cause of the dwarfism in sd3. Cytological observations revealed enhanced lateral cell division at the stem nodes in sd3, which has led to significantly thickened stem walls and an increased basal internode diameter. sd3 is sensitive to gibberellin, and exogenous GA3 can restore its phenotype. Transcriptome analysis identified 3067 differentially expressed genes (DEGs), GO and KEGG pathway enrichment revealed 57 genes potentially involved in regulating plant height. Notably, GID1 in the gibberellin signaling pathway was upregulated in sd3, while GID2, UNE10, and PIF1 were downregulated, suggesting these genes may play a key role in the dwarf phenotype of sd3. Overall, our findings provide preliminary insights into the dwarfing mechanisms of sd3 and offer valuable candidate genes for breeding lodging-resistant varieties and improving plant architecture through genetic approaches.

Key words: Tartary buckwheat, semi-dwarf mutant, phenotype identification, transcriptome, differential expression gene

Table 1

Primer sequences used in this study"

基因ID
Gene ID
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
FtActin GAGTTATGAGCTTCCTGATG CCGCCACTCAACACAATGTT
FtPinG0006532300.01 TCGGACCAATCAACTCTGCT AACCCACCACAAGAACCCAA
FtPinG0000484500.01 AGTCCAGAAACCAAGCCACA AAACTGGGAAGCAAGGGGAC
FtPinG0001040500.01 ACGATCTATGACGGACGACA GGCATGATTCTCCGTTCTCC
FtPinG0004976300.01 CGCACCACCAAACTCAGAGT GCTCGAATCCACCACAGTCA
FtPinG0006346100.01 GGAGTGCGATAATGGCTGGA ACTCCTCCTTCACCAACTCG
FtPinG0009574600.01 ACAACAGGGTGGGAAAGTGA CGTCGTGCCAAAAACCCTAC
FtPinG0001225500.01 CGTGTCACCAAACCCATTCG GTCGTGAATCCGCTCTCCTT
FtPinG0009795500.01 AGGGTGGAAGGGTGAAGACT TGGAATCAAGCAAAAGCGCA

Fig. 1

Differences in plant height-related traits between the semi-dwarf mutant sd3 and WT of Tartary buckwheat (A): phenotypes of sd3 and WT in seedling stage (left) and mature stage (right); (B): plant height; (C): main stem nodes; (D): internode length; (E): internode thickness. * and ** indicate significant difference of the same trait between wild type and sd3 at the 0.05 and 0.01 levels, respectively. Scale bar = 5.0 cm."

Table 2

Statistical analysis of grain traits in sd3 and WT of Tartary buckwheat"

基因型
Genotype
千粒重
Thousand grain weight (g)
粒长
Grain length (mm)
粒宽
Grain width (mm)
籽粒长宽比
Grain length to width ratio
籽粒面积
Grain area
(mm2)
籽粒周长
Grain perimeter (mm)
单株粒重
Grain weight per plant (g)
sd3 15.89±1.11** 3.72±0.09** 3.31±0.07 1.13±0.01** 9.07±0.36** 11.68±0.30** 3.17±0.54
WT 17.76±0.90 4.13±0.08 3.33±0.03 1.24±0.02 9.72±0.22 12.21±0.17 4.53±1.15

Fig. 2

Cell morphology of the second internode in the semi-dwarf mutant sd3 and wild type (WT) of Tartary buckwheat (A): cell morphology of the second internode in transverse section; (B): cell morphology of the second internode in longitudinal section; (C): cell length statistics in longitudinal section; (D): cell width statistics in longitudinal section. ** indicates a significant difference between WT and sd3 in the same trait at P < 0.01. Scale bar = 100 μm."

Fig. 3

Effects of different exogenous hormones on plant height and number of main stem nodes in the seme-dwarf mutant sd3 and wild type (WT) GA3: gibberellins; IAA: indole-3-acetic acid; BR: brassinosteroids. * and ** indicate a significant phenotypic difference of the same genotype between H2O and hormones treatments at P < 0.05 and P < 0.01, respectively."

Table 3

Quality statistics of transcriptome sequencing data"

样品
Sample
原始测序数据
Raw reads
过滤后的数据
Clean reads
Q20 (%) Q30 (%) GC含量
GC content (%)
比对率
Mapped ratio (%)
表达基因
Expressed genes
WT-1 18,538,986 17,995,672 98.59 95.50 45.45 95.79 22,277
WT-2 29,682,745 28,905,875 98.67 95.77 45.66 95.40 22,461
WT-3 26,856,615 26,208,150 98.79 96.15 45.52 96.15 22,496
sd3-1 25,628,759 25,093,875 98.93 96.56 44.37 96.08 22,990
sd3-2 25,228,748 24,594,866 98.74 95.97 45.51 96.03 22,233
sd3-3 33,559,767 32,565,576 98.70 95.88 45.55 96.06 22,404

Fig. 4

Volcano plot of differentially expressed gene between the semi-dwarf mutant sd3 and wild type (WT) of Tartary buckwheat Red indicates genes with up-regulated expression, blue indicates genes with down-regulated expression, and gray dots indicate genes without significant expression differences. -log10 (FDR): the negative logarithm of the false discovery rate based on 10; log2 (FC): the logarithm of the fold change based on 2."

Fig. 5

Top 20 KEGG-enriched pathways of DEGs between sd3 and WT"

Fig. 6

qRT-PCR validation of the eight genes related to plant hormone signal transduction (A): qRT-PCR validation of the eight genes related to plant hormone signal transduction; (B): correlation analysis between qRT-PCR and RNA-seq. * and ** indicate a significant difference between WT and sd3 at P < 0.05 and P < 0.01, respectively."

Fig. 7

Heatmap of gene expression in the gibberellin signaling pathway"

Table 4

Differentially expressed genes with synonymous or non-synonymous SNP/InDel variations identified in the gibberellins signal pathway"

基因ID
Gene ID
基因名称
Gene name
染色体
Chromosome
外显子
Exon
突变/核苷酸
Mutation/nucleotide
突变/蛋白质
Mutation/protein
FtPinG0003219000.01 GID1 Ft3 exon1 c.A1008G p.V336V
FtPinG0000281400.01 UNE10 Ft1 exon2 c.96_97del p.M32fs
exon2 c.798_798del p.R266fs
exon3 c.655_655del p.D219fs
FtPinG0004174900.01 PIF1 Ft3 exon3 c.G362A p.G121E
exon7 c.C1165T p.P389S
exon7 c.C1120T p.R374C
FtPinG0004976300.01 PIF1 Ft1 exon4 c.861_861del p.R287fs
exon7 c.1398_1398del p.P466fs
[1] 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展. 贵州师范大学学报(自然科学版), 2018, 36(3): 1-7.
Chen Q F. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat. J Guizhou Norm Univ (Nat Sci), 2018, 36(3): 1-7 (in Chinese with English abstract).
[2] Zhu F. Chemical composition and health effects of Tartary buckwheat. Food Chem, 2016, 203: 231-245.
doi: S0308-8146(16)30211-4 pmid: 26948610
[3] Sinkovič L, Kokalj Sinkovič D, Meglič V. Milling fractions composition of common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Food Chem, 2021, 365: 130459.
doi: 10.1016/j.foodchem.2021.130459
[4] 任长忠, 陈庆富, 李洪有, 等. 苦荞种质资源评价及遗传育种研究展望. 西北植物学报, 2023, 43: 1251-1260.
Ren C Z, Chen Q F, Li H Y, et al. Tartary buckwheat germplasm evaluation and genetic breeding research perspectives. Acta Bot Boreali-Occident Sin, 2023, 43: 1251-1260 (in Chinese with English abstract).
[5] 郭志利, 孙常青. 北方旱地荞麦抗倒栽培技术研究. 杂粮作物, 2007, 27: 364-366.
Guo Z L, Sun C Q. Study on lodging-resistant cultivation techniques of buckwheat in northern arid regions. Rain Fed Crops, 2007, 27: 364-366 (in Chinese with English abstract).
[6] 叶宇栋. 水稻半矮秆突变体M080的鉴定及其基因克隆. 吉林大学硕士学位论文, 吉林长春, 2024.
Ye Y D. Identification and Gene Cloning of the Semi-dwarf Mutant M080 in Rice. MS Thesis of Jilin University, Changchun, Jilin, China, 2024 (in Chinese with English abstract).
[7] 刘磊. 玉米矮化突变体gad39的遗传分析与分子鉴定. 河南农业大学硕士学位论文, 河南郑州, 2021.
Liu L. Genetic Analysis and Molecular Identification of Maize Dwarf Mutant gad39. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract).
[8] Zhang B, Liu X J, Guo Y J, et al. Investigation on agronomic characters of dwarf mutant 778 in Broomcorn millet (Panicum miliaceum L.) and analysis of its sensitivity to GA. Agric Biotechnol, 2020, 9: 7-11.
[9] Zhang J, Liu X Q, Li S Y, et al. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One, 2014, 9: e88068.
[10] 赵秋实, 李倩倩, 王超杰, 等. 普通小麦品种陕农33矮秆突变体的矮化效应分析. 麦类作物学报, 2018, 38: 1053-1064.
Zhao Q S, Li Q Q, Wang C J, et al. Analysis of the dwarfing mutagenic effect on dwarf mutants of common wheat variety Shaannong 33. J Triticeae Crops, 2018, 38: 1053-1064 (in Chinese with English abstract).
[11] 宋秋平, 俞佳虹, 刘佳, 等. 植物矮化基因相关研究进展. 广东农业科学, 2021, 48(8): 19-28.
Song Q P, Yu J H, Liu J, et al. Research progress of dwarfing genes in plants. Guangdong Agric Sci, 2021, 48(8): 19-28 (in Chinese with English abstract).
[12] 刘洁, 李润植. 作物矮化基因与GA信号转导途径. 中国农学通报, 2005, 21(1): 37-40.
Liu J, Li R Z. Dwarfing genes and GA signal transduction pathway in crops. Chin Agric Sci Bull, 2005, 21(1): 37-40 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.050137
[13] Silverstone A L, Sun T. Gibberellins and the green revolution. Trends Plant Sci, 2000, 5: 1-2.
pmid: 10637654
[14] Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564
[15] Chen Y, Hou M M, Liu L J, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol, 2014, 166: 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533
[16] Bensen R J, Johal G S, Crane V C, et al. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75-84.
doi: 10.1105/tpc.7.1.75 pmid: 7696880
[17] Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7: 1307-1317.
doi: 10.1105/tpc.7.8.1307 pmid: 7549486
[18] Fu J Y, Ren F, Lu X, et al. A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol, 2016, 170: 742-751.
doi: 10.1104/pp.15.01727 pmid: 26620527
[19] Woodward A W, Bartel B. Auxin: regulation, action, and interaction. Ann Bot, 2005, 95: 707-735.
doi: 10.1093/aob/mci083
[20] Feng L, Li G R, He Z B, et al. The ARF, GH3, and Aux/IAA gene families in Castor bean (Ricinus communis L.): genome-wide identification and expression profiles in high-stalk and dwarf strains. Ind Crops Prod, 2019, 141: 111804.
doi: 10.1016/j.indcrop.2019.111804
[21] 赵小珍. 甘蓝型油菜半矮杆突变体df34矮杆基因的精细定位与候选基因分析. 南京农业大学硕士学位论文, 江苏南京, 2022.
Zhao X Z. Fine Mapping and Candidate Gene Analysis of df34 Dwarf Gene in Brassica napus Semi-dwarf Mutant. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract).
[22] 罗京. 甘蓝型油菜矮化性状的蛋白质组和转录组联合分析. 贵州师范大学硕士学位论文, 贵州贵阳, 2021.
Luo J. Brassica napus L. Dwarf Traits Proteome and Transcriptome Joint Analysis. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2021 (in Chinese with English abstract).
[23] 侯珊珊. 黄瓜极端矮化突变体“super compact-2”基因分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2018.
Hou S S. Characteristic Analysis of the ‘super compect-2’ Mutant in Cucumber (Cucumis sativus L.). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).
[24] Wakasa Y, Kawakatsu T, Ishimaru K, et al. Generation of major glutelin-deficient (GluA, GluB, and GluC) semi-dwarf Koshihikari rice line. Plant Cell Rep, 2024, 43: 51.
doi: 10.1007/s00299-023-03131-5 pmid: 38308138
[25] Irshad A, Guo H J, Ur Rehman S, et al. Induction of semi-dwarf trait to a three pistil tall mutant through breeding with increased grain numbers in wheat. Front Genet, 2022, 13: 828866.
doi: 10.3389/fgene.2022.828866
[26] Kaur A, Best N B, Hartwig T, et al. A maize semi-dwarf mutant reveals a GRAS transcription factor involved in brassinosteroid signaling. Plant Physiol, 2024, 195: 3072-3096.
doi: 10.1093/plphys/kiae147
[27] Guo F D, Hou L, Ma C L, et al. Comparative transcriptome analysis of the peanut semi-dwarf mutant 1 reveals regulatory mechanism involved in plant height. Gene, 2021, 791: 145722.
doi: 10.1016/j.gene.2021.145722
[28] 韦爽. 不同苦荞品种植株性状与抗倒伏的关系研究. 贵州师范大学硕士学位论文, 贵州贵阳, 2015.
Wei S. Study on the Relationship between Lodging Resistance and Plant Characters of Different Tartary Buckwheat. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2015 (in Chinese with English abstract).
[29] 关志秀. 苦荞节间伸长突变体ein1的生长特性与转录组学研究. 贵州师范大学硕士学位论文, 贵州贵阳, 2023.
Guan Z X. Characteristics of Plant Growth and Transcriptomic Analysis of Internode Elongation Mutant ein1 in Fagopyrum tataricum. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2023 (in Chinese with English abstract).
[30] Li H Y, Lyu Q Y, Shi T X, et al. The complete reference genome of Tartary buckwheat and its mutation library provide important resources for genetic studies and breeding. Cell Rep, 2025, 44: 115621.
doi: 10.1016/j.celrep.2025.115621
[31] 汤子凯. 梨矮化相关基因筛选及PbrGA2ox1的功能研究. 南京农业大学硕士学位论文, 江苏南京, 2021.
Tang Z K. Pear Dwarf Related Genes Mining and Functional Study of PbrGA2ox1. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract).
[32] 虞慧芳, 曹家树, 王永勤. 植物矮化突变体的激素调控. 生命科学, 2002, 14(2): 85-88.
Yu H F, Cao J S, Wang Y Q. Hormones regulation in plant dwarfing mutants. Chin Bull Life Sci, 2002, 14(2): 85-88 (in Chinese with English abstract).
[33] Cui F, Li J, Ding A M, et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011, 122: 1517-1536.
doi: 10.1007/s00122-011-1551-6 pmid: 21359559
[34] 杨睿, 张正, 杨丽莉, 等. 玉米矮杆突变体A5的表型鉴定及转录组分析. 山西大学学报(自然科学版), 2020, 43: 597-603.
Yang R, Zhang Z, Yang L L, et al. Phenotypic characterization and transcriptome analysis of maize dwarf mutant A5. J Shanxi Univ (Nat Sci Edn), 2020, 43: 597-603 (in Chinese with English abstract).
[35] 苏在兴, 黄忠勤, 高闰飞, 等. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析. 作物学报, 2023, 49: 2133-2143.
doi: 10.3724/SP.J.1006.2023.21056
Su Z X, Huang Z Q, Gao R F, et al. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect. Acta Agron Sin, 2023, 49: 2133-2143 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21056
[36] 陶怡然, 熊毓贞, 谢佳, 等. 水稻矮化大粒突变体sdb1的鉴定与基因定位. 作物学报, 2018, 44: 1621-1630.
doi: 10.3724/SP.J.1006.2018.01621
Tao Y R, Xiong Y Z, Xie J, et al. Identification and gene mapping of sdb1 mutant with a semi-dwarfism and bigger seed in rice. Acta Agron Sin, 2018, 44: 1621-1630 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01621
[37] Sun Z X, Wang X F, Liu R H, et al. Comparative transcriptomic analysis reveals the regulatory mechanism of the gibberellic acid pathway of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) dwarf mutants. BMC Plant Biol, 2021, 21: 206.
doi: 10.1186/s12870-021-02978-8
[38] 汪灿. 荞麦茎秆特性与倒伏的关系及调控研究. 西南大学硕士学位论文, 重庆, 2015.
Wang C. Relationship between Culm Characteristics and Lodging and Its Regulation Study in Buckwheat. MS Thesis of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract).
[39] 高翔, 郝志萍, 吕慧卿, 等. 荞麦抗倒性研究进展. 中国农学通报, 2019, 35(13): 6-11.
doi: 10.11924/j.issn.1000-6850.casb18110108
Gao X, Hao Z P, Lyu H Q, et al. Research progress on lodging resistance of buckwheat. Chin Agric Sci Bull, 2019, 35(13): 6-11 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb18110108
[40] Liu C, Zheng S, Gui J S, et al. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol Plant, 2018, 11: 288-299.
doi: S1674-2052(17)30374-X pmid: 29253619
[41] Shimizu A, Yamaguchi H, Degi K, et al. Development of ‘Darumadattan’, a semidwarf lodging-resistant Tartary buckwheat cultivar, using gamma-ray irradiation. Breed Sci, 2020, 70: 623-630.
doi: 10.1270/jsbbs.20044
[42] 张超, 孙君灵, 贾银华, 等. 外源激素对一个新的棉花极端矮化突变体AS98植株生长和酶活性的影响. 中国农业科学, 2010, 43: 1370-1378.
Zhang C, Sun J L, Jia Y H, et al. Effects of exogenous hormones on plant growth and enzyme activity of a new cotton extremely dwarf mutant AS98. Sci Agric Sin, 2010, 43: 1370-1378 (in Chinese with English abstract).
[43] 叶梅荣, 朱昌华, 甘立军, 等. 激素间相互作用对植物茎伸长生长的调控综述. 中国农学通报, 2007, 23(4): 228-231.
Ye M R, Zhu C H, Gan L J, et al. Hormonal interactions in the control of plant stem elongation. Chin Agric Sci Bull, 2007, 23(4): 228-231 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.0704228
[44] 王武全, 曹本高, 员海燕. 玉米矮秆突变体的激素敏感性分析. 西北农林科技大学学报(自然科学版), 2017, 45(8): 51-55.
Wang W Q, Cao B G, Yun H Y. Hormone sensitivity of a dwarf mutant of maize. J Northwest A&F Univ (Nat Sci Edn), 2017, 45(8): 51-55 (in Chinese with English abstract).
[45] 屈淑平, 丁文琪, 王云莉, 等. 外源激素处理对美洲南瓜植株生长的影响. 东北农业大学学报, 2020, 51(1): 23-32.
Qu S P, Ding W Q, Wang Y L, et al. Effect of exogenous hormone treatment on the growth of pumpkin (Cucurbita pepo L.). J Northeast Agric Univ, 2020, 51(1): 23-32 (in Chinese with English abstract).
[46] Han L L, Jiang C G, Zhang W, et al. Morphological characterization and transcriptome analysis of new dwarf and narrow-leaf (dnl2) mutant in maize. Int J Mol Sci, 2022, 23: 795.
doi: 10.3390/ijms23020795
[47] 黄志刚, 李玲, 陈兆平, 等. SPINDLY与赤霉素的信号转导. 植物学通报, 2005, 40(1): 100-106.
Huang Z G, Li L, Chen Z P, et al. SPINDLY and gibberellin signaling. Chin Bull Bot, 2005, 40(1): 100-106 (in Chinese with English abstract).
[48] 张珏锋, 李芳, 钟海英, 等. 茭白‘浙农7号’不同生长阶段的叶片转录组学及激素水平分析. 农业生物技术学报, 2024, 32: 299-310.
Zhang J F, Li F, Zhong H Y, et al. Analysis of transcriptomics and hormone levels of Jiaobai ‘Zhenong 7’ in different growth stages. J Agric Biotechnol, 2024, 32: 299-310 (in Chinese with English abstract).
[49] Feng S H, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451: 475-479.
doi: 10.1038/nature06448
[50] 白羿雄, 赵小红, 姚晓华, 等. 作物抗倒伏相关性状及其信号转导调控机理的研究进展. 植物科学学报, 2021, 39: 102-109.
Bai Y X, Zhao X H, Yao X H, et al. Research progress on crop lodging resistance-related traits and mechanism of signal transduction. Plant Sci J, 2021, 39: 102-109 (in Chinese with English abstract).
[51] de Lucas M, Davière J M, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451: 480-484.
doi: 10.1038/nature06520
[52] Nakamura Y, Kato T, Yamashino T, et al. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa. Biosci Biotechnol Biochem, 2007, 71: 1183-1191.
doi: 10.1271/bbb.60643
[53] 胡新喜. 柑橘转基因研究及转phyB基因枳橙的综合鉴定. 湖南农业大学博士学位论文, 湖南长沙, 2007.
Hu X X. Transformation of Citrus and Identification of Ttransgenic Citrange with phyB Gene. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2007 (in Chinese with English abstract).
[1] JI Bai-Lu, SUN Yi-Wen, LIU Wan-Feng, QIAN Ya-Xin, JIANG Cai-Hong, GENG Rui-Mei, LIU Dan, CHENG Li-Rui, YANG Ai-Guo, HUANG Li-Yu, LI Xiao-Xu, PU Wen-Xuan, GAO Jun-Ping, ZHANG Qiang, WEN Liu-Ying. Functional verification of the key gene NtLPAT involved in lipid biosynthesis in tobacco [J]. Acta Agronomica Sinica, 2025, 51(9): 2527-2537.
[2] HE Hong-Li, ZHANG Yu-Han, YANG Jing, CHENG Yun-Qing, ZHAO Yang, LI Xing-Nuo, SI Hong-Liang, ZHANG Xing-Zheng, YANG Xiang-Dong. Creation and physiological analysis of an e1-as gene mutant in soybean [J]. Acta Agronomica Sinica, 2025, 51(8): 2228-2239.
[3] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[4] WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899.
[5] ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631.
[6] SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567.
[7] ZHU Can-Can, LI Jun-Xia, JING Ya, FU Sen-Jie, QIN Na, WANG Chun-Yi, DAI Shu-Tao, WEI Xin, ZHANG Cheng-Yang. Physiological response and transcriptome analysis of foxtail millet with different shading tolerances under shading stress [J]. Acta Agronomica Sinica, 2025, 51(12): 3211-3223.
[8] WEI Qi, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, TANG Huai-Jun, LIU Cheng, WANG Tian-Yu, LI Yu, LU Yun-Cai, LI Chun-Hui. Identifying of excellent drought-tolerant gene resources based on drought- tolerant maize inbred line SL001 [J]. Acta Agronomica Sinica, 2025, 51(12): 3171-3183.
[9] XU Rui, HE Miao-Hua, WANG Hao, LI Wei, REN Jie, XIA Zhi-Qiang. Spatial transcriptomic analysis of soybean embryonic responses to X-ray irradiation [J]. Acta Agronomica Sinica, 2025, 51(12): 3121-3132.
[10] GE Jia-Hao, LEI Xin-Yue, WANG Qing-Ming, HAN Hui-Bing, LI Shao-Fei, WANG Qi-Xuan, FENG Bai-Li, GAO Jin-Feng. Screening of low-phosphorus tolerant germplasm and comprehensive evaluation of low phosphorus tolerance in Tartary buckwheat at seedling stage [J]. Acta Agronomica Sinica, 2025, 51(11): 2911-2922.
[11] JU Jian-Ye, YANG Liu, CHEN Hao, KANG Lei, XIA Shi-Tou, LIU Zhong-Song. Single-nucleus transcriptome analysis reveals the cellular differentiation trajectories and molecular mechanisms underlying yellow seed coat formation in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(11): 2860-2874.
[12] ZHAO Hui-Xia, GUO Yan-Li, ZHENG Yu-Ling, HE Ling, CHEN Rui, WANG Shan-Shan, ZENG Chang-Li, ZOU Jun, SHEN Jin-Xiong, FU Ting-Dong, LIU Xiao-Yun, WAN He-Ping. Differential gene expression analysis of response to alkaline salt stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(11): 3105-3118.
[13] WANG Chen, HE Dan, YAO Min, QIU Ping, HE Xin, XIONG Xing-Hua, KANG Lei, LIU Zhong-Song, QIAN Lun-Wen. Transcriptome-based identification of flowering candidate genes and functional characterization of BnaCOR27 in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(10): 2693-2704.
[14] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[15] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!