Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Transcriptome analysis and identification of candidate genes associated with husk number in maize

Ma Liang1,Ma Lu1,Zhang Shu-Yu1,Zhang Hui-Min1,Wang Ren-Ming3,Song Xu-Dong1,Zhang Zhen-Liang1,Mao Yu-Xiang1,Lu Hu-Hua1,Chen Guo-Qing1,2,Hao De-Rong1,Zhou Guang-Fei1,*   

  1. 1 Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, Jiangsu, China; 2 Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, Jiangsu, China; 3 Qingdao Agro-Unitek Import & Export Co., Ltd., Qingdao 266109, Shandong, China
  • Received:2025-07-30 Revised:2025-11-18 Accepted:2025-11-18 Published:2025-11-21
  • Contact: 周广飞, E-mail: gfzhou88@jaas.ac.cn E-mail:20230098@jaas.ac.cn
  • Supported by:
    This study was supported by the Youth Talent Support Program of Jiangsu Association for Science and Technology (TJ-2023-052), the Natural Science Foundation of Jiangsu Province, China (BK20241833), the Key Research and Development Program of Jiangsu Province (BE2022343), the Seed Industry Revitalization Announcement and Leading Project of Jiangsu Province (JBGS [2021] 054), and the Youth Doctoral Foundation of Jiangsu Yanjiang Institute of Agricultural Science (YJBS (2023) 004).

Abstract:

Husk number is a key trait influencing the suitability of maize varieties for mechanical grain harvesting. To investigate the molecular mechanisms and candidate genes associated with husk number, the multi-husk inbred line YD97 and the few-husk inbred line YD132 were used as experimental materials. Transcriptome sequencing was conducted on husk tissues collected at the seven-leaf stage and the silking stage. Using YD97 as the control and YD132 as the sample, a total of 4089 differentially expressed genes (DEGs) were identified, including 1979 upregulated and 2150 downregulated genes. K-means clustering grouped these DEGs into eight distinct clusters. Gene Ontology (GO) enrichment analysis showed that the DEGs were primarily involved in responses to stimuli, amino acid transport, auxin response, branch morphogenesis, nitrogen compound metabolism, and cell cycle processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were significantly enriched in pathways related to photosynthesis, plant hormone signal transduction, starch and sucrose metabolism, and motor proteins. Notably, the plant hormone signal transduction pathway—particularly the auxin signaling pathway—appears to play a critical role in the morphogenesis of maize husk number. Furthermore, two candidate genes, Zm00001eb156610 (encoding glutamate synthase 2) and Zm00001eb275220 (encoding a protein S-acyltransferase), were identified by integrating transcriptome sequencing, QTL mapping, candidate gene association analysis, and quantitative real-time PCR validation across husk tissues from 25 maize inbred lines. These findings contribute to a better understanding of the molecular mechanisms regulating husk number in maize and provide valuable insights for its genetic improvement.

Key words: maize, husk number, transcriptome sequencing, plant hormone, candidate gene

[1] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50: 2027–2035.

Wang K R, Li S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017, 50: 2027–2035 (in Chinese with English abstract).

[2] 李璐璐, 雷晓鹏, 谢瑞芝, . 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50: 2044–2051.

Li L L, Lei X P, Xie R Z, et al. Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017, 50: 2044–2051 (in Chinese with English abstract). 

[3] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017, 35: 265–272.

Li S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci), 2017, 35: 265–272 (in Chinese with English abstract). 

[4] Wang P, Kelly S, Fouracre J P, et al. Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J, 2013, 75: 656–670. 

[5] Abadassi J. Maize agronomic traits needed in tropical zone. Int J Environ Sci Technol, 2015, 4: 371–392.

[6] Zhou G F, Hao D R, Xue L, et al. Genome-wide association study of kernel moisture content at harvest stage in maize. Breed Sci, 2018, 68: 622–628. 

[7] 周广飞, 马亮, 马璐, . 玉米苞叶性状全基因组关联分析. 中国农业科学, 2025, 58: 431–442.

Zhou G F, Ma L, Ma L, et al. Genome-wide association study of husk traits in maize. Sci Agric Sin, 2025, 58: 431–442 (in Chinese with English abstract). 

[8] 李璐璐, 谢瑞芝, 王克如, . 去苞叶对玉米子粒脱水过程的影响. 作物杂志, 2018, (2): 114–117.

Li L L, Xie R Z, Wang K R, et al. Effects of peeling husk on grain dehydration of maize. Crops, 2018, (2): 114117 (in Chinese with English abstract). 

[9] Brewbaker J L, Kim S K. Inheritance of husk numbers and ear insect damage in maize. Crop Sci, 1979, 19: 3236

[10] Zhou G F, Hao D R, Chen G Q, et al. Genome-wide association study of the husk number and weight in maize (Zea mays L.). Euphytica, 2016, 210: 195–205. 

[11] Cui Z H, Luo J H, Qi C Y, et al. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics, 2016, 17: 946. 

[12] Zhou G F, Mao Y X, Xue L, et al. Genetic dissection of husk number and length across multiple environments and fine-mapping of a major-effect QTL for husk number in maize (Zea mays L.). Crop J, 2020, 8: 1071–1080. 

[13] Cui Z H, Xia A A, Zhang A, et al. Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theor Appl Genet, 2018, 131: 2131–2144. 

[14] Zhang J, Zhang F Q, Tian L, et al. Molecular mapping of quantitative trait loci for 3 husk traits using genotyping by sequencing in maize (Zea mays L.). G3: Gene Genom Genet, 2022, 12: jkac198. 

[15] Wang Z, Xia A A, Wang Q, et al. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. Plant Physiol, 2024, 195: 2129–2142. 

[16] 任蒙蒙, 张红伟, 王建华, . 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析. 作物学报, 2020, 46: 1016–1024.

Ren M M, Zhang H W, Wang J H, et al. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes. Acta Agron Sin, 2020, 46: 1016–1024 (in Chinese with English abstract). 

[17] 王新涛, 魏锋, 代资举, . 基于QTL定位和RNA-seq分析挖掘玉米茎粗候选基因. 植物遗传资源学报, 2022, 23: 1737–1745.

Wang X T, Wei F, Dai Z J, et al. Identification of candidate genes associating with stem diameter in maize (Zea mays L.) based on integrating QTL mapping and RNA-seq. J Plant Genet Resour, 2022, 23: 1737–1745 (in Chinese with English abstract). 

[18] 叶靓, 朱叶琳, 裴琳婧, . 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因. 作物学报, 2024, 50: 2279–2296.

Ye L, Zhu Y L, Pei L J, et al. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis. Acta Agron Sin, 2024, 50: 2279–2296 (in Chinese with English abstract). 

[19] Zhou G F, Zhu Q L, Mao Y X, et al. Multi-locus genome-wide association study and genomic selection of kernel moisture content at the harvest stage in maize. Front Plant Sci, 2021, 12: 697688. 

[20] Xia A A, Zheng L M, Wang Z, et al. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize. New Phytol, 2023, 239: 2367–2381. 

[21] Bradbury P J, Zhang Z W, Kroon D E, et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635. 

[22] Strable J, Nelissen H. The dynamics of maize leaf development: patterned to grow while growing a pattern. Curr Opin Plant Biol, 2021, 63: 102038. 

[23] Shen X M, Liu L, Tran T, et al. KRN5b regulates maize kernel row number through mediating phosphoinositol signalling. Plant Biotechnol J, 2024, 22: 3427–3441. 

[24] Ning Q, Jian Y N, Du Y F, et al. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun, 2021, 12: 5832. 

[25] Gallavotti A, Yang Y, Schmidt R J, et al. The Relationship between auxin transport and maize branching. Plant Physiol, 2008, 147: 1913–1923. 

[26] Yan J B, Warburton M, Crouch J. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci, 2011, 51: 433–449. 

[27] Liu X J, Hu B, Chu C C. Nitrogen assimilation in plants: current status and future prospects. J Genet Genom, 2022, 49: 394–404. 

[28] Liao H S, Chung Y H, Hsieh M H. Glutamate: A multifunctional amino acid in plants. Plant Sci, 2022, 318: 111238. 

[29] Kojima S, Minagawa H, Yoshida C, et al. Coregulation of glutamine synthetase1;2 (GLN1;2) and NADH-dependent glutamate synthase (GLT1) gene expression in Arabidopsis roots in response to ammonium supply. Front Plant Sci, 2023, 14: 1127006. 

[30] Wang Q, Wang M, Xia A A, et al. Natural variation in ZmNRT2.5 modulates husk leaf width and promotes seed protein content in maize. Plant Biotechnol J, 2025, 23: 1039–1052. 

[31] Tamura W, Hidaka Y, Tabuchi M, et al. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids, 2010, 39: 1003–1012. 

[32] Tamura W, Kojima S, Toyokawa A, et al. Disruption of a novel NADH-glutamate Synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci, 2011, 2: 57. 

[33] Liu F, Lu J Y, Li S, et al. Protein S-acylation, a new Panacea for plant fitness. J Integr Plant Biol, 2024, 66: 2102–2108. 

[34] Zhang X M, Mi Y, Mao H D, et al. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol J, 2020, 18: 1271–1283. 

[35] Cheng Y T, Thireault C A, Zhang L, et al. Roles of microbiota in autoimmunity in Arabidopsis leaves. Nat Plants, 2024, 10: 1363–1376. 

[36] Duan Y H, Li P P, Zhang D Y, et al. S-palmitoylation of MAP kinase is essential for fungal virulence. mBio, 2024, 15. 

[37] Deng Y H, Chen Q J, Qu Y Y. Protein S-acyl transferase GhPAT27 was associated with Verticillium wilt resistance in cotton. Plants, 2022, 11: 2758. 

[38] 朱秋丽, 张舒钰, 章慧敏, . 玉米果穗苞叶包裹度的QTL分析. 农业生物技术学报, 2023, 31: 2231–2238.

Zhu Q L, Zhang S Y, Zhang H M, et al. QTL analysis of husk coverage on maize (Zea mays) ear. J Agric Biotechnol, 2023, 31: 2231–2238 (in Chinese with English abstract). 

[39] 段灿星, 王晓鸣, 宋凤景, . 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48: 2152–2164.

Duan C X, Wang X M, Song F J, et al. Advances in research on maize resistance to ear rot. Sci Agric Sin, 2015, 48: 2152–2164 (in Chinese with English abstract). 

[40] Zhou G F, Li S F, Ma L, et al. Mapping and validation of a stable quantitative trait locus conferring maize resistance to Gibberella ear rot. Plant Dis, 2021, 105: 1984–1991. 

[41] Akohoue F, Miedaner T. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. Front Plant Sci, 2022, 13: 1050891. 

[1] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[2] JIANG Huan-Qi, DUAN Ao, GUO Chao, HUANG Xiao-Meng, AI De-Jun, LIU Xiao-Xue, TAN Jing-Yi, PENG Cheng-Lin, LI Man-Fei, DU He-Wei. Effects of waterlogging stress on root metabolism of maize seedlings [J]. Acta Agronomica Sinica, 2025, 51(9): 2295-2306.
[3] GAO Yuan, WANG Yu-Qi, JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin. Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize [J]. Acta Agronomica Sinica, 2025, 51(9): 2318-2329.
[4] ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340.
[5] LI Lu-Qi, CHENG Yu-Kun, BAI Bin, LEI Bin, GENG Hong-Wei. Genome-wide association analysis of stomatal-related traits in wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(9): 2266-2284.
[6] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[7] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[8] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
[9] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[10] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[11] ZHAO Chao-Nan, WANG Jin-Feng, ZHANG Yu, ZHANG Li, LI Rui-Qi, WANG Peng-Fei, LI Ge-Zi, ZHANG Hong-Jun, YU Bo, KANG Guo-Zhang. Genome-wide association study for the identification and characterization of nitrogen efficiency-related genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1801-1813.
[12] SHEN Ao, LIU Min, NI Di-An, LIU Wei. Promoter characterization and expression pattern analysis of the m6A methyltransferase gene SiMTA1 in foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(7): 1969-1978.
[13] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[14] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[15] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!