Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 262-278.doi: 10.3724/SP.J.1006.2026.54065

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Mechanism of low O2 and high CO2 storage environment delaying aging of potato tuber

Tian Jia-Chun(), Ge Xia, Li Shou-Qiang, Li Mei, Tian Shi-Long*(), Zhang Ya-Qian, Cheng Jian-Xin, Li Yu-Mei   

  1. Agricultural Products Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2025-05-21 Accepted:2025-08-13 Online:2026-01-12 Published:2025-08-21
  • Contact: *E-mail: 723619635@qq.com
  • Supported by:
    National Natural Science Foundation of China(32160596);China Agriculture Research System of MOF and MARA(CARS-09-P26)

Abstract:

This study aimed to investigate the mechanism by which a low-oxygen and high-carbon dioxide storage environment delays the aging of potato tubers. Using the Longshu 17 cultivar as the research subject, we evaluated nutritional quality, appearance, and physiological parameters, along with transcriptomic profiling at mid-storage (60 days) and late-storage (150 days) stages. Phenotypic and transcriptomic responses of tubers to the low O2 high CO2 environment were analyzed to elucidate the molecular regulatory mechanisms underlying tuber preservation. The results showed that this storage condition significantly delayed starch degradation and reduced the accumulation of reducing sugars during cold storage. It also inhibited sprouting and water loss, preserved optimal skin color, suppressed the activities of phenylalanine ammonia-lyase and peroxidase, and positively regulated three endogenous hormones. Transcriptomic analysis revealed that compared to the control (CK), the low O2 and high CO2 treatment (CA) led to 741 differentially expressed genes (DEGs) at mid-storage, including 378 upregulated and 363 downregulated genes. At the end of storage, 1658 DEGs were identified, with 1211 upregulated and 447 downregulated. Bioinformatics analysis indicated that the low O2 and high CO2 environment significantly modulated pathways related to phenylpropanoid biosynthesis, starch and sucrose metabolism, plant hormone signal transduction, and MAPK signaling. In conclusion, this study provides a theoretical basis for controlled atmosphere storage of potatoes and offers new insights into the molecular mechanisms involved in tuber aging and preservation.

Key words: potato, low O2 and high CO2, delay aging, transcriptomics, metabolic pathways

Fig. 1

Effect of low O2 and high CO2 storage environment on starch and reducing sugar content of potato tubers CA, CK represent low O2 and high CO2 experimental group and the control group, respectively. Different lowercase letters indicate significant differences among groups at the P < 0.05 level."

Fig. 2

Effect of low O2 and high CO2 storage environment on weight loss and germination rate of potato tubers Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences among groups at the P < 0.05 level."

Fig. 3

Effect of low O2 and high CO2 storage environment on L* value and browning index of potato tubers Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences among groups at the P < 0.05 level."

Fig. 4

Effects of low O2 and high CO2 storage environment on PAL and POD activity of potato tubers Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences among groups at the P < 0.05 level."

Fig. 5

Effects of low O2 and high CO2 storage environment on endogenous hormone content of potato tubers Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences among groups at the P < 0.05 level."

Fig. 6

Volcano plot of differentially expressed genes CA-60, CK-60, CA-150, and CK-150 represent the low O2 and high CO2 conditions experimental groups and control groups for 60 days and 150 days, respectively."

Fig. 7

GO classification of differentially expressed genes Treatments are the same as those given in Fig. 6."

Fig. 8

KEGG pathway enrichment scatter plot of differentially expressed genes Treatments are the same as those given in Fig. 6."

Table 1

Analysis of differentially expressed genes in potato stored at low O2 and high CO2 for 60 days"

代谢路径
Pathway
功能注释
Function annotation
基因号
Gene ID
FPKM值 FPKM value log2FC 变化趋势
Variation trend
CA-60 CK-60
苯丙烷类生物合成Phenylpropanoid biosynthesis PAL Soltu.DM.03G011440 3.75 9.99 1.48 上调 Up
Soltu.DM.03G011450 2.90 10.35 1.91 上调 Up
Soltu.DM.03G011460 3.09 12.63 2.09 上调 Up
Soltu.DM.03G011480 4.06 11.62 1.60 上调 Up
Soltu.DM.03G011490 3.84 10.88 1.58 上调 Up
Soltu.DM.08G017960 0.15 0.76 2.36 上调 Up
CCoAOMT Soltu.DM.02G028540 0.58 2.09 1.93 上调 Up
CAD Soltu.DM.03G011790 0.15 0.76 1.52 上调 Up
Soltu.DM.02G013110 2.42 0.23 -3.24 下调 Down
POD Soltu.DM.01G001840 5.20 30.76 2.61 上调 Up
Soltu.DM.10G023940 0.40 1.91 2.27 上调 Up
Soltu.DM.02G023430 1.32 0.19 -2.55 下调 Down
Soltu.DM.03G002490 7.77 2.06 -1.79 下调 Down
CCR Soltu.DM.03G030980 11.46 5.19 -1.03 下调 Down
COMT Soltu.DM.10G000070 10.41 3.71 -1.37 下调 Down
淀粉和蔗糖代谢Starch and sucrose metabolism TPS Soltu.DM.02G015310 2.16 6.07 1.56 上调 Up
Soltu.DM.04G029210 3.17 11.93 2.03 上调 Up
AMY Soltu.DM.05G006330 35.33 111.89 1.72 上调 Up
EG Soltu.DM.08G028990 4.17 1.27 -1.61 下调 Down
Soltu.DM.09G002770 0.53 0.10 -2.72 下调 Down
植物激素信号转导
Plant hormone signal transduction
DELLA Soltu.DM.10G020680 0.74 3.91 2.45 上调 Up
SNRK2 Soltu.DM.05G027280 5.02 11.78 1.32 上调 Up
ETR, ERS Soltu.DM.06G014700 4.86 13.39 1.55 上调 Up
ERF2 Soltu.DM.08G024160 0.50 1.79 1.94 上调 Up
Soltu.DM.09G021200 0.44 2.13 2.35 上调 Up
JAZ Soltu.DM.12G026270 6.76 28.28 1.81 上调 Up
AUX1 Soltu.DM.01G050890 1.83 0.26 -2.60 下调 Down
Soltu.DM.09G000480 12.09 4.50 -1.30 下调 Down
IAA Soltu.DM.03G035810 21.38 5.44 -1.85 下调 Down
GH3 Soltu.DM.01G046780 6.34 0.85 -2.68 下调 Down
NPR1 Soltu.DM.10G027950 0.76 0.19 -1.83 下调 Down
MAPK信号通路-
植物
MAPK signaling pathway-plant
WRKY33 Soltu.DM.06G018840 21.90 56.93 1.48 上调 Up
Soltu.DM.09G009490 0.76 4.06 2.50 上调 Up
MPK3 Soltu.DM.06G005160 15.54 42.85 1.55 上调 Up
ACS1_2_6 Soltu.DM.08G004500 3.30 8.63 1.48 上调 Up
ETR, ERS Soltu.DM.06G014700 4.86 13.39 1.55 上调 Up
ERF1 Soltu.DM.09G021200 0.44 2.13 2.35 上调 Up
SNRK2 Soltu.DM.05G027280 4.55 11.69 1.32 上调 Up
苯丙氨酸代谢Phenylalanine
metabolism
AADC Soltu.DM.08G017960 0.15 0.76 2.36 上调 Up
PAL Soltu.DM.03G011440 3.75 9.99 1.48 上调 Up
Soltu.DM.03G011450 2.90 10.35 1.91 上调 Up
Soltu.DM.03G011460 3.09 12.63 2.09 上调 Up
Soltu.DM.03G011480 4.06 11.62 1.60 上调 Up
Soltu.DM.03G011490 3.84 10.88 1.58 上调 Up

Table 2

Analysis of differentially expressed genes in potato stored at low O2 and high CO2 for 150 days"

代谢路径
Pathway
功能注释
Function annotation
基因号
Gene ID
FPKM值 FPKM value log2FC 变化趋势
Variation trend
CA-150 CK-150
苯丙烷类生物合成Phenylpropanoid
biosynthesis
PAL Soltu.DM.03G004870 3.18 8.87 1.54 上调 Up
Soltu.DM.03G004900 5.54 13.01 1.33 上调 Up
Soltu.DM.03G004920 4.76 11.90 1.38 上调 Up
Soltu.DM.03G011440 2.79 20.24 2.92 上调 Up
Soltu.DM.03G011450 4.64 31.62 2.83 上调 Up
Soltu.DM.03G011460 3.17 24.10 2.98 上调 Up
Soltu.DM.03G011480 12.29 36.42 2.76 上调 Up
Soltu.DM.03G011490 4.37 31.50 2.91 上调 Up
Soltu.DM.09G005690 2.59 6.70 1.49 上调 Up
Soltu.DM.09G005700 1.72 15.01 3.12 上调 Up
Soltu.DM.09G005710 1.38 8.51 2.69 上调 Up
CYP73A Soltu.DM.05G019180 1.44 4.95 1.83 上调 Up
Soltu.DM.06G032860 13.61 28.41 1.13 上调 Up
COMT Soltu.DM.03G021440 8.08 15.58 1.27 上调 Up
CCoAOMT Soltu.DM.02G028520 1.16 4.88 2.14 上调 Up
Soltu.DM.02G028540 0.61 3.42 2.54 上调 Up
Soltu.DM.02G028550 22.19 73.83 1.79 上调 Up
HCT Soltu.DM.11G024290 7.15 0.19 -5.09 下调 Down
POD Soltu.DM.02G034250 1.15 2.58 1.22 上调 Up
Soltu.DM.04G027650 8.29 37.62 2.25 上调 Up
Soltu.DM.06G010770 1.62 12.38 2.99 下调 Down
Soltu.DM.01G001840 13.01 2.29 -2.43 下调 Down
苯丙烷类生物合成Phenylpropanoid
biosynthesis
POD Soltu.DM.01G047840 7.58 0.05 -7.12 下调 Down
Soltu.DM.02G027850 5.29 1.50 -1.74 下调 Down
Soltu.DM.02G029260 16.05 0.30 -5.62 下调 Down
淀粉和蔗糖代谢
Starch and sucrose metabolism
INV, sacA Soltu.DM.03G015280 2.13 26.90 3.76 上调 Up
Soltu.DM.10G025040 0.03 4.21 7.17 上调 Up
SUS MLD_newGene_1096 1.25 4.23 1.78 上调 Up
Soltu.DM.03G019120 0.85 2.26 1.46 上调 Up
Soltu.DM.07G013370 102.54 213.59 1.26 上调 Up
TPS Soltu.DM.07G001730 5.18 12.87 1.39 上调 Up
Soltu.DM.04G021620 3.68 8.25 1.22 上调 Up
Soltu.DM.05G021910 6.37 24.92 2.02 上调 Up
G-1-P-ADP Soltu.DM.01G049590 695.24 306.04 1.13 下调 Down
PGM Soltu.DM.07G015450 1.68 0.44 1.82 下调 Down
植物激素信号转导Plant hormone signal transduction IAA Soltu.DM.06G034480 2.65 11.84 2.22 上调 Up
Soltu.DM.09G025700 4.81 21.10 2.20 上调 Up
Soltu.DM.12G003310 4.22 8.25 1.03 上调 Up
GH3 Soltu.DM.01G046780 1.74 6.48 1.92 上调 Up
DELLA Soltu.DM.12G001740 0.20 1.02 2.32 上调 Up
PYL Soltu.DM.03G013340 0.74 2.42 1.74 上调 Up
Soltu.DM.05G022460 0.96 2.44 1.38 上调 Up
PP2C Soltu.DM.03G022710 32.54 77.80 1.52 上调 Up
Soltu.DM.06G013730 0.90 5.49 2.63 上调 Up
BKI1 Soltu.DM.12G005660 3.52 7.71 1.19 上调 Up
JAZ Soltu.DM.03G036980 6.84 25.56 2.10 上调 Up
Soltu.DM.07G012950 12.70 42.57 1.36 上调 Up
Soltu.DM.12G026270 2.68 20.90 3.03 上调 Up
TGA Soltu.DM.05G002740 1.78 2.84 1.00 上调 Up
Soltu.DM.10G026610 1.27 3.08 1.37 上调 Up
ARR-A Soltu.DM.06G011620 6.16 13.62 1.20 上调 Up
ARR-B Soltu.DM.07G007330 16.75 2.92 1.68 下调 Down
CYCD3 Soltu.DM.04G033220 1.47 0.32 -2.11 下调 Down
NPR1 Soltu.DM.04G012100 3.50 1.05 -1.65 下调 Down
Soltu.DM.10G027630 10.51 3.65 1.46 下调 Down
MAPK信号通路-植物
MAPK signaling
pathway-plant
FLS2 Soltu.DM.02G015580 0.05 0.40 2.76 上调 Up
Soltu.DM.03G001460 0.39 1.18 1.64 上调 Up
WRKY33 Soltu.DM.06G018840 39.15 79.35 1.01 上调 Up
Soltu.DM.09G009490 4.10 22.06 2.48 上调 Up
MAPK信号通路-植物
MAPK signaling
pathway-plant
ACS1_2_6 Soltu.DM.08G004500 2.92 19.63 2.80 上调 Up
ERF1 Soltu.DM.04G008930 1.97 7.03 1.90 上调 Up
PYL Soltu.DM.03G013340 0.74 2.42 1.74 上调 Up
Soltu.DM.05G022460 0.96 2.44 1.38 上调 Up
PP2C Soltu.DM.03G022710 32.52 77.80 1.52 上调 Up
Soltu.DM.06G013730 0.90 5.46 2.63 上调 Up
CALM Soltu.DM.01G019360 4.25 12.32 1.59 上调 Up
苯丙氨酸代谢Phenylalanine
metabolism
AADC Soltu.DM.08G017880 0.14 1.06 2.92 上调 Up
Soltu.DM.08G017910 0.30 1.32 2.17 上调 Up
AMIE Soltu.DM.01G050800 0.42 1.21 1.57 上调 Up
PAL Soltu.DM.03G004870 3.18 8.87 1.54 上调 Up
Soltu.DM.03G004900 5.61 13.01 1.33 上调 Up
Soltu.DM.03G004920 4.76 11.90 1.38 上调 Up
Soltu.DM.03G011440 2.80 20.24 2.92 上调 Up
Soltu.DM.03G011450 4.64 31.62 2.83 上调 Up
Soltu.DM.03G011460 3.17 24.10 2.98 上调 Up
Soltu.DM.03G011480 5.44 35.237 2.76 上调 Up
Soltu.DM.03G011490 4.38 31.50 2.91 上调 Up
Soltu.DM.09G005690 2.59 6.97 1.49 上调 Up
Soltu.DM.09G005700 1.72 15.01 3.19 上调 Up
Soltu.DM.09G005710 1.38 8.51 2.69 上调 Up
GOT2 Soltu.DM.10G018890 4.46 1.60 -1.41 下调 Down
[1] Thoma J L, Cantrell C L, Zheljazkov V D. Effects of essential oil fumigation on potato sprouting at room-temperature storage. Plants, 2022, 11: 3109.
doi: 10.3390/plants11223109
[2] 张益瑄, 马宇, 王童童, 等. 马铃薯DIR家族全基因组鉴定及表达模式分析. 生物技术通报, 2025, 41(3): 123-136.
doi: 10.13560/j.cnki.biotech.bull.1985.2024-0825
Zhang Y X, Ma Y, Wang T T, et al. Genome-wide identification and expression profiles of DIR gene family in potato. Biotechnol Bull, 2025, 41(3): 123-136 (in Chinese with English abstract).
[3] Li M, Zheng X Y, Zhang X J, et al. Inhibitory impact of Chlorine dioxide on potato tuber sprouting via inducing oxidative stress. Sci Hortic, 2024, 330: 113102.
doi: 10.1016/j.scienta.2024.113102
[4] Thoma J L, Cantrell C L, Tamang P, et al. Determining the optimum mixture of three essential oils for potato sprout suppression at room temperature storage. Front Plant Sci, 2023, 14: 1199117.
doi: 10.3389/fpls.2023.1199117
[5] 俞婷, 黄丹丹, 朱炎辉, 等. 马铃薯Stpatatin 05基因转录调控因子筛选及互作验证. 生物技术通报, 2025, 41(3): 137-145.
doi: 10.13560/j.cnki.biotech.bull.1985.2024-0991
Yu T, Huang D D, Zhu Y H, et al. Screening and interaction verification of transcription factors Stpatatin 05 gene in potato. Biotechnol Bull, 2025, 41(3): 137-145 (in Chinese with English abstract).
[6] 赵娜, 刘宇曦, 张朝澍, 等. 不同马铃薯淀粉含量差异的转录组学解析. 作物学报, 2024, 50: 1503-1513.
Zhao N, Liu Y X, Zhang C S, et al. Transcriptomic analysis of differences in the starch content of different potatoes. Acta Agron Sin, 2024, 50: 1503-1513 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.34172
[7] Kulakova A V, Efremov G I, Shchennikova A V, et al. Dependence of the content of starch and reducing sugars on the level of expression of the genes of β-amylases StBAM1 and StBAM9 and the amylase inhibitor StAI during long-term low-temperature storage of potato tubers. Vavilovskii Zhurnal Genet Selektsii, 2022, 26: 507-514.
[8] Datir S S, Regan S. Role of alkaline/neutral invertases in postharvest storage of potato. Postharvest Biol Technol, 2022, 184: 111779.
doi: 10.1016/j.postharvbio.2021.111779
[9] Herman D J, Knowles L O, Knowles N R. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosum L.). Posth Biol Technol, 2016, 121: 106-117.
doi: 10.1016/j.postharvbio.2016.07.017
[10] 田甲春, 田世龙, 李守强, 等. 低O2高CO2贮藏环境对马铃薯块茎淀粉-糖代谢的影响. 核农学报, 2021, 35: 1832-1840.
doi: 10.11869/j.issn.100-8551.2021.08.1832
Tian J C, Tian S L, Li S Q, et al. Effects of low oxygen and high carbon dioxide storage environment on starch-glucose metabolism of potato tubers. J Nucl Agric Sci, 2021, 35: 1832-1840 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2021.08.1832
[11] 田甲春, 田世龙, 李守强, 等. 低氧高二氧化碳贮藏环境对马铃薯品质的影响. 食品科学, 2020, 41(15): 275-281.
Tian J C, Tian S L, Li S Q, et al. Effects of low oxygen and high carbon dioxide storage environment on potato quality. Food Sci, 2020, 41(15): 275-281 (in Chinese with English abstract).
[12] 于弘弢. 微环境气调对蓝莓品质变化的调控作用. 辽宁大学硕士学位论文, 辽宁沈阳, 2021.
Yu H T. Regulation of Quality of Blueberries by Microenvironmental Modified Atomosphere Packing. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2021 (in Chinese with English abstract).
[13] Zhang J Y, Jiang H, Li Y T, et al. Transcriptomic and physiological analysis reveals the possible mechanism of ultrasound inhibiting strawberry (Fragaria × Ananassa Duch.) postharvest softening. Front Nutr, 2022, 9: 1066043.
doi: 10.3389/fnut.2022.1066043
[14] 李可昕, 韩晨瑞, 孙敏敏, 等. 基于转录组学分析1-MCP与EBR联合处理对鲜黄花菜采后衰老的影响. 食品科学, 2024, 45(4): 279-288.
Li K X, Han C R, Sun M M, et al. Transcriptomic analysis of the effect of combined treatment with 1-methylcyclopropene and 2,4-epibrassionolide on the postharvest senescence of fresh daylily (Hemerocallis citrina). Food Sci, 2024, 45(4): 279-288 (in Chinese with English abstract).
doi: 10.1111/jfds.1980.45.issue-2
[15] 洪晨, 郭丽娜, 张莘妍, 等. 基于转录组学分析超声胁迫诱导鲜切紫甘蓝酚类物质合成机制. 食品科学, 2025, 46(14): 37-48.
Hong C, Guo L N, Zhang X Y, et al. Transcriptomics analysis to elucidate the mechanisms underlying the synthesis of phenolic compounds in fresh-cut red cabbages under ultrasound stress. Food Sci, 2025, 46(14): 37-48 (in Chinese with English abstract).
doi: 10.1111/jfds.1981.46.issue-1
[16] Dobránszki J, Hidvégi N, Gulyás A, et al. Abiotic stress elements in vitro potato (Solanum tuberosum L.) exposed to air-based and liquid-based ultrasound: a comparative transcriptomic assessment. Prog Biophys Mol Biol, 2020, 158: 47-56.
doi: 10.1016/j.pbiomolbio.2020.09.001
[17] 杨双鹤, 申挥, 罗海波, 等. 近冰温贮藏在延缓甜龙竹笋采后木质化衰老中的作用. 食品科学, 2024, 45(17): 216-225.
doi: 10.7506/spkx1002-6630-20231226-218
Yang S H, Shen H, Luo H B, et al. Effect of near-freezing temperature storage on delaying postharvest lignification of Dendrocalamus brandisii shoots. Food Sci, 2024, 45(17): 216-225 (in Chinese with English abstract).
[18] 葛霞, 徐瑞, 李梅, 等. 香芹酮对马铃薯种薯发芽的调控机制. 中国农业科学, 2020, 53: 4929-4939.
doi: 10.3864/j.issn.0578-1752.2020.23.017
Ge X, Xu R, Li M, et al. Regulation mechanism of carvone on seed potato sprouting. Sci Agric Sin, 2020, 53: 4929-4939 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.23.017
[19] Rinaldo D, Sotin H, Pétro D, et al. Browning susceptibility of new hybrids of yam (Dioscorea alata) as related to their total phenolic content and their phenolic profile determined using LC-UV-MS. LWT Food Sci Technol, 2022, 162: 113410.
doi: 10.1016/j.lwt.2022.113410
[20] 莫小引, 管兰兰, 汤鹏宇, 等. 基于非靶向代谢组学分析红托竹荪干品褐变过程中的代谢物变化. 食品与发酵工业, 网络首发[2025-04-29], https://doi.org/10.13995/j.cnki.11-1802/ts.042315.
Mo X Y, Guan L L, Tang P Y, et al. Metabolite changes in the browning process of Dictyophora rubrovolvata dry products based on non- targeted metabolomic analysis. Food Ferm Ind, Published online [2025-04-29], https://doi.org/10.13995/j.cnki.11-1802/ts.042315 (in Chinese with English abstract).
[21] Zheng X Y, Li M, Tian S L, et al. Integrated analysis of transcriptome and metabolome reveals the mechanism of chlorine dioxide repressed potato (Solanum tuberosum L.) Tuber sprouting. Front Plant Sci, 2022, 13: 887179.
doi: 10.3389/fpls.2022.887179
[22] 吕春娟, 刘东, 许奕雯, 等. 3-癸烯-2-酮对马铃薯的抑芽作用机理. 核农学报, 2024, 38: 1125-1136.
doi: 10.11869/j.issn.1000-8551.2024.06.1125
Lyu C J, Liu D, Xu Y W, et al. The sprout inhibiting mechanism of 3-Decene-2-One on potato. J Nucl Agric Sci, 2024, 38: 1125-1136 (in Chinese with English abstract).
doi: 10.11869/j.issn.1000-8551.2024.06.1125
[23] 宋雪微. 加工型马铃薯的品质差异及低温糖化特性研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022.
Song X W. Study on Quality Difference and Low-temperature Sweetening Characteristics of Processed Potato. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract).
[24] Li J X, Ishii T, Yoshioka M, et al. CDPK5 and CDPK 13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. Plant Physiol, 2024, 197: kiae293.
[25] Matsuura-Endo C, Kobayashi A, Noda T, et al. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res, 2004, 117: 131-137.
doi: 10.1007/s10265-003-0137-z pmid: 14986152
[26] 阳芳, 何高镜, 郭圣军, 等. 影响马铃薯块茎低温糖化的植物激素相关基因的表达. 湖南农业大学学报(自然科学版), 2022, 48(2): 160-167.
Yang F, He G J, Guo S J, et al. Expression analysis of potato cold-induced sweetening related genes in phytohormone pathway. J Hunan Agric Univ (Nat Sci), 2022, 48(2): 160-167 (in Chinese with English abstract).
[27] Min T, Xie J, Zheng M L, et al. The effect of different temperatures on browning incidence and phenol compound metabolism in fresh-cut Lotus (Nelumbo nucifera G.) root. Posth Biol Technol, 2017, 123: 69-76.
doi: 10.1016/j.postharvbio.2016.08.011
[28] 李文博, 张新祺, 赵亚婷, 等. 采前喷施壳寡糖对采后西梅黑斑病的控制. 食品科学, 2025, 46(7): 283-291.
Li W B, Zhang X Q, Zhao Y T, et al. Control of postharvest prune black spot disease by preharvest chitosan oligosaccharide spraying. Food Sci, 2025, 46(7): 283-291 (in Chinese with English abstract).
doi: 10.1111/jfds.1981.46.issue-1
[29] 韦雪. 气调包装和脉冲强光对鲜切马铃薯褐变及营养品质的影响. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2022.
Wei X. Effects of Modified Atmosphere Packaging and Pulsed Light on Browning and Nutritional Quality of Fresh-cut Potatoes. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2022 (in Chinese with English abstract).
[30] 李云云, 赵春霞, 程曦, 等. 高氧气调包装对双孢蘑菇微生物及其品质的影响. 食品科学, 2016, 37(2): 261-265.
doi: 10.7506/spkx1002-6630-201602046
Li Y Y, Zhao C X, Cheng X, et al. Effects of high-oxygen modified atmosphere packaging on microorganisms and quality maintenance in Agaricus bisporus. Food Sci, 2016, 37(2): 261-265 (in Chinese with English abstract).
doi: 10.1111/jfds.1972.37.issue-2
[31] 张睿, 王秀娟, 高伟. 植物激素对次生代谢产物的调控研究. 中国中药杂志, 2020, 45: 4205-4210.
Zhang R, Wang X J, Gao W. Regulation mechanism of plant hormones on secondary metabolites. China J Chin Mater Med‌, 2020, 45: 4205-4210 (in Chinese with English abstract).
[32] 朱迪, 王冰冰, 贺苗苗. 马铃薯GH3基因家族成员的鉴定及表达分析. 农业生物技术学报, 2025, 33: 498-512.
Zhu D, Wang B B, He M M. Identification and expression analysis of GH3 gene family members in potato (Solanum tuberosum). J Agric Biotechnol, 2025, 33: 498-512 (in Chinese with English abstract).
[33] Sonnewald S, Sonnewald U. Regulation of potato tuber sprouting. Planta, 2014, 239: 27-38.
doi: 10.1007/s00425-013-1968-z pmid: 24100410
[34] Boivin M, Bourdeau N, Barnabé S, et al. Sprout suppressive molecules effective on potato (Solanum tuberosum) tubers during storage: a review. Am J Potato Res, 2020, 97: 451-463.
doi: 10.1007/s12230-020-09794-0
[35] 毛林莉. 马铃薯低温贮藏及回温过程糖代谢机制研究. 武汉轻工大学硕士学位论文, 湖北武汉, 2023.
Mao L L. Study of Sugar Metabolism During Low Temperature Storage and Rewarming of Potato. MS Thesis of Wuhan Polytechnic University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).
[36] Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701
[37] Ding Z J, Yan J Y, Li G X, et al. WRKY 41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J, 2014, 79: 810-823.
doi: 10.1111/tpj.2014.79.issue-5
[38] 陈彩锦, 马琳, 包明芳, 等. WRKY基因家族在植物中的研究进展. 草地学报, 2025, 33: 2059-2069.
doi: 10.11733/j.issn.1007-0435.2025.07.002
Chen C J, Ma L, Bao M F, et al. Research progress on the role of wrky family genes in plants. Acta Agrest Sin, 2025, 33: 2059-2069 (in Chinese with English abstract).
[1] Wang Ya-Zhi, Yang Biao, Ji Xiang-Lin, Shi Ying, Zhang Li-Li. Identification of drought-resistant resources and preliminary screening of drought resistant genes in diploid potatoes [J]. Acta Agronomica Sinica, 2026, 52(1): 72-84.
[2] Ji Xuan-Tong, Bian Chun-Song, Jin Li-Ping, Li Sen, Qin Jun-Hong, Li Guang-Cun. Responses of root-associated microorganisms of different drought-tolerant potato varieties to drought conditions [J]. Acta Agronomica Sinica, 2026, 52(1): 165-177.
[3] ZHUO Feng-Qi, TANG Zhen-San, LEI Yu-Jun, CHENG Li-Xiang, ZHAO Tian-Tian, LYU Tai, YANG Chen, ZHANG Feng. Screening of low glycemic potato varieties (lines) based on cooking methods and regeneration temperature [J]. Acta Agronomica Sinica, 2025, 51(9): 2538-2546.
[4] ZHU Jin-Cheng, YANG Qiu-Hua, CHENG Li-Xiang, LI Wen-Li, SHI Ming-Ming, LI Hui-Xia, ZHANG Feng. Screening of potato germplasm for resistance to Meloidogyne incognita and analysis of related physiological responses [J]. Acta Agronomica Sinica, 2025, 51(9): 2307-2317.
[5] YIN Li-Na, ZHANG Rui, CHEN Guo-Huan, BAI Lei, LI Jun, GUO Hua-Chun, YANG Fang. Comparison of wound healing capacity of tubers of different potato varieties [J]. Acta Agronomica Sinica, 2025, 51(9): 2399-2411.
[6] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[7] JIA Xiao-Xia, QI En-Fang, WEN Guo-Hong, MA Sheng, HUANG Wei, LYU He-Ping, LI Jian-Wu, QU Ya-Ying, DING Ning. Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’ [J]. Acta Agronomica Sinica, 2025, 51(9): 2285-2294.
[8] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[9] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[10] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[11] YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598.
[12] XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420.
[13] ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060.
[14] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[15] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!