Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 165-177.doi: 10.3724/SP.J.1006.2026.54071

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Responses of root-associated microorganisms of different drought-tolerant potato varieties to drought conditions

Ji Xuan-Tong1,2(), Bian Chun-Song2, Jin Li-Ping2, Li Sen1, Qin Jun-Hong2,*(), Li Guang-Cun2,*()   

  1. 1College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2National Key Laboratory of Vegetable Biotechnology Breeding / Key Laboratory of Biology and Genetic Breeding of Tuber Crops, Ministry of Agriculture and Rural Affairs / Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2025-06-13 Accepted:2025-10-30 Online:2026-01-12 Published:2025-11-07
  • Contact: *E-mail: liguangcun@caas.cn; E-mail: qinjunhong@caas.cn
  • Supported by:
    Youth Fund Project of National Natural Science Foundation of China(32301950);National Key R&D Program of China(2023YFD1600605)

Abstract:

Potato is a globally important food crop, but its growth is highly susceptible to drought stress. Drought not only reduces potato yield but also alters the structure of the rhizosphere microbial community, thereby affecting the plant’s drought tolerance and overall health. In this study, metagenomic sequencing was conducted on the rhizosphere microbiota of the drought-tolerant potato genotype C93 and the drought-sensitive variety Favorita, grown under rain-proof shed soil conditions, to investigate their structural and functional responses under varying drought intensities. The results showed that as drought severity increased, the alpha diversity of Favorita first decreased and then increased, whereas the alpha diversity of C93 remained relatively stable. Proteobacteria (30.44%-63.00%) and Actinobacteria were the dominant phyla across all treatments, but genus-level composition exhibited genotype-specific differences. Under severe drought conditions, C93 enriched Lysobacter (10.16%) and Sphingomonas (6.37%), while Favorita was dominated by Nocardia (8.29%) and Streptomyces. Functional annotation revealed that under moderate drought stress, the ABC transporter pathway played a key role in both C93 and Favorita’s responses. However, under severe drought, C93 primarily relied on the ABC transporter pathway, while Favorita depended on the AMPK signaling pathway to mitigate stress. Microbial network analysis further demonstrated that C93 maintained greater network stability through a cooperative interaction model involving a “core microbiota + functional hub”, whereas Favorita exhibited insufficient network modularity and relied on the expansion of single functional taxa, resulting in weaker long-term drought resilience. This study provides preliminary insights into genotype-specific mechanisms by which rhizosphere microorganisms regulate drought resistance in potato, offering a theoretical foundation for the development of drought-tolerant microbial agents and the advancement of drought- resilience technologies.

Key words: potato, drought, metagenome sequencing, rhizosphere, function of microbial communities

Fig. S1

Shows the actual soil moisture content under the soil planting condition of the rain shelter w1: full irrigation; w2: moderate drought stress; w3: severe drought stress."

Fig. 1

Relative abundance and composition of soil microorganisms in two different drought-tolerant potatoes under three water treatment levels A: relative abundance of soil microorganisms in the rhizosphere of two different drought-resistant potato varieties under three water treatments; B: composition of microorganisms in the rhizosphere of two different drought-resistant potato varieties under three water treatments. w1v1: drought-sensitive genotype Favorita under fully irrigated conditions; w2v1: drought-sensitive genotype Favorita under moderate drought conditions; w3v1: drought-sensitive genotype Favorita under severe drought conditions; w1v2: drought-resistant genotype C93 under fully irrigated conditions; w2v2: drought-resistant genotype C93 under moderate drought conditions; w3v2: drought-resistant genotype C93 under severe drought conditions."

Fig. 2

Bar chart of species distribution at phylum level (A) and genus level (B) Treatments are the same as those given in Fig. 1. “p” represents phylum, “c” represents class, “o” represents order, “f” represents family, and “g” represents genus."

Fig. S2

Significance analysis of two different drought-tolerant potatoes under different drought stresses at the genus level Treatments are the same as those given in Fig. 1."

Table 1

Comparison of α-diversity indices of rhizosphere microbial communities of two potato genotypes under different drought stress conditions"

处理组
Group
Shannon指数
Shannon index
Simpson指数
Simpson index
Invsimpson指数
Invsimpson index
w1v1 5.99±0.07 b 0.99±0.00 a 104.14±7.31 b
w1v2 5.84±0.02 a 0.99±0.00 a 83.91±1.17 a
w2v1 5.80±0.12 a 0.99±0.00 a 82.19±7.70 a
w2v2 5.91±0.18 a 0.99±0.00 a 85.37±19.45 a
w3v1 6.10±0.05 b 0.99±0.00 a 111.17±7.74 b
w3v2 5.84±0.12 a 0.99±0.00 a 84.88±8.01 a

Fig. 3

Classification using NMDS at the phylum level (A) and genus level (B) Treatments are the same as those given in Fig. 1. “Stress” measures the goodness-of-fit of the low-dimensional projection (typically 2D or 3D) to the original high-dimensional data; lower values indicate better fit. When Stress < 0.05, the 2D projection accurately reflects the true relationships among samples, and results are considered highly reliable."

Fig. 4

Distribution of LDA scores of rhizosphere microbial communities in two drought-tolerant potato varieties under different drought stresses Treatments are the same as those given in Fig. 1. “p” represents phylum, “c” represents class, “o” represents order, “f” represents family, and “g” represents genus."

Table S1

Linear discriminant analysis (LDA) score table of rhizosphere microbial communities of two different drought-tolerant potato types under different drought conditions (LDA > 3.5)"

属名
Genus
处理组
Group
丰度
Abundance
LDA得分
LDA score
鞘氨醇单胞菌属Sphingomonas w2v1 4.67 4.13
溶杆菌属Lysobacter w2v2 5.21 4.75
假单胞菌属Pseudomonas w2v1 4.18 3.75
诺卡氏菌属Nocardia w3v1 4.04 3.51
盐微菌属Halomicrobium w2v2 4.24 3.87
气微菌属Aeromicrobium w3v1 4.33 3.79
阿尔比塔莱菌属Albitalella w1v2 3.96 3.60
诺卡菌属Nocardia w1v1 4.92 4.38
鞘氨醇单胞菌科未分类Mycoplasma w1v2 4.76 4.27
链霉菌属Streptomyces w1v1 4.05 3.54
鞘氨醇单胞菌属Sphingomonas w1v2 4.42 3.96
短波单胞菌属Brevundimonas w1v2 4.42 3.96
放线菌纲未分类Actinobacteria w1v1 4.25 3.68
黄单胞菌科未分类Pseudomonas w3v2 4.46 4.02
黄单胞菌属Xanthomonas w2v1 4.45 3.99
放线菌纲未分类Actinobacteria w3v1 4.42 3.83
鞘氨醇单胞菌属Sphingomonas w3v2 4.97 4.42
鞘氨醇单胞菌目未分类Myxococcus w3v2 4.30 3.70

Table S2

Distribution of the top ten relative abundance of microorganisms at the genus level in each treatment group (%)"

处理组
Group
w1v1 w1v2 w2v1 w2v2 w3v1 w3v2
溶杆菌属Lysobacter 6.90 9.60 10.39 16.24 10.20 10.16
诺卡菌属Nocardia 6.75 3.90 3.46 5.73 8.29 5.07
鞘氨醇单胞菌属Sphingomonas 8.66 9.29 7.51 4.90 5.19 6.37
黄单胞菌科未分类Xanthomonadaceae 2.48 3.30 3.57 3.82 3.01 3.32
酸杆菌门未命名Acidobacteria 3.11 2.76 2.77 1.80 3.00 2.59
放线菌纲未分类Actinobacteria 2.61 1.57 1.36 1.82 2.32 1.63
节杆菌属Arthrobacter 1.40 1.34 1.02 1.85 2.08 1.34
鞘氨醇单胞菌科未分类Sphingomonadaceae 3.33 5.46 5.32 2.33 2.06 5.80
鞘氨醇单胞菌属Sphingomonas 4.21 3.48 4.70 2.96 1.93 4.12
放线菌纲未命名Actinobacteria 1.71 1.10 1.02 1.31 1.79 1.30

Table 2

Relative abundance distribution (%) of functional pathways of rhizosphere microorganisms in two potato genotypes under different drought stress conditions"

KEGG w1v1 w1v2 w2v1 w2v2 w3v1 w3v2
细胞过程Cellular processes 9.19 9.34 9.77 9.32 9.41 9.26
环境信息处理Environmental information processing 12.05 12.59 12.07 12.21 12.36 11.97
遗传信息处理Genetic information processing 15.90 16.36 16.19 16.46 16.13 16.42
人类疾病Human disease 6.12 6.26 6.43 6.35 6.12 6.27
新陈代谢Metabolism 50.29 49.79 50.19 49.57 49.90 50.63
有机系统Organic system 6.45 5.67 5.36 6.09 6.08 5.45

Fig. 5

Distribution of the top 30 most abundant KEGG metabolic pathways of rhizosphere microorganisms under different combinations of water stress and potato varieties Treatments are the same as those given in Fig. 1."

Fig. 6

Significantly enriched pathways of rhizosphere microorganisms under different combinations of water stress and potato cultivars Treatments are the same as those given in Fig. 1. Error bars represent standard deviations. Multiple comparisons of group means were performed using Tukey’s test; different letters indicate significant differences between groups (P < 0.05)."

Fig. 7

Network co-occurrence plots of Favorita and C93 under different drought conditions Treatments are the same as those given in Fig. 1."

Table S3

Analysis of topological parameters of rhizosphere microbial co-occurrence network in different treatment groups"

处理组
Group
节点数
Nodes
正链接数
Positive connection
负链接数
Negative connection
总边数
Total edges
平均度
Average degree
网络密度
Network density
模块数量
Number of models
最大度节点
Node with the highest degree
w1v1 22 41 37 78 7.09 0.3376 3 17 (节点n0-n17, 共18个节点)
17 (nodes n0-n17, a total of 18 nodes)
w1v2 21 63 57 120 11.43 0.5273 2 10 (节点n0-n10, 共11个节点)
10 (nodes n0-n10, a total of 11 nodes)
w2v1 22 44 44 88 8.00 0.3731 3 9 (节点n0-n9, 共10个节点)
9 (nodes n0-n9, a total of 10 nodes)
w2v2 22 63 63 126 11.45 0.5523 3 12 (节点n0-n12, 共13个节点)
12 (nodes n0-n12, a total of 13 nodes)
w3v1 22 63 63 126 11.45 0.5455 3 10 (节点n0-n10, 共11个节点)
10 (nodes n0-n10, a total of 11 nodes)
w3v2 22 56 56 112 10.18 0.4747 3 9 (节点n0-n9, 共10个节点)
9 (nodes n0-n9, a total of 10 nodes)

Fig. 8

Comparison of biomass of Favorita and C93 under different drought stresses Treatments are the same as those given in Fig. 1. Different lowercase letters indicate significant differences between treatments (P < 0.05)."

[1] Schafleitner R, Gutierrez Rosales R O, Gaudin A, et al. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol Biochem, 2007, 45: 673-690.
doi: 10.1016/j.plaphy.2007.06.003
[2] Luitel B P, Khatri B B, Choudhary D, et al. Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int J Appl Sci Biotechnol, 2015, 3: 513-519.
doi: 10.3126/ijasbt.v3i3.13347
[3] Obidiegwu J E, Bryan G J, Jones H G, et al. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci, 2015, 6: 542.
doi: 10.3389/fpls.2015.00542 pmid: 26257752
[4] Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol, 2013, 64: 807-838.
doi: 10.1146/annurev-arplant-050312-120106 pmid: 23373698
[5] Bulgarelli D, Garrido-Oter R, Münch P C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe, 2015, 17: 392-403.
doi: S1931-3128(15)00031-1 pmid: 25732064
[6] Schlaeppi K, Dombrowski N, Oter R G, et al. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA, 2014, 111: 585-592.
doi: 10.1073/pnas.1321597111 pmid: 24379374
[7] Sun Y M, Guo J J, Alejandro Jose Mur L, et al. Nitrogen starvation modulates the sensitivity of rhizobacterial community to drought stress in Stevia rebaudiana. J Environ Manag, 2024, 354: 120486.
doi: 10.1016/j.jenvman.2024.120486
[8] Lundberg D S, Lebeis S L, Paredes S H, et al. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488: 86-90.
doi: 10.1038/nature11237
[9] Liu F, Hewezi T, Lebeis S L, et al. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol, 2019, 19: 201.
doi: 10.1186/s12866-019-1572-x pmid: 31477026
[10] Li J J, Yang L, Mao S L, et al. Assembly and enrichment of rhizosphere and bulk soil microbiomes in Robinia pseudoacacia plantations during long-term vegetation restoration. Appl Soil Ecol, 2023, 187: 104835.
doi: 10.1016/j.apsoil.2023.104835
[11] Gao C, Xu L, Montoya L, et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat Commun, 2022, 13: 3867.
doi: 10.1038/s41467-022-31343-y pmid: 35790741
[12] Fang J, Shi G F, Wei S L, et al. Drought sensitivity of spring wheat cultivars shapes rhizosphere microbial community patterns in response to drought. Plants, 2023, 12: 3650.
doi: 10.3390/plants12203650
[13] Chen Y L, Sun C Y, Yan Y X, et al. Impact of arbuscular mycorrhizal fungi on maize rhizosphere microbiome stability under moderate drought conditions. Microbiol Res, 2025, 290: 127957.
doi: 10.1016/j.micres.2024.127957
[14] Kong X G, Guo Z A, Yao Y, et al. Acetic acid alters rhizosphere microbes and metabolic composition to improve willows drought resistance. Sci Total Environ, 2022, 844: 157132.
doi: 10.1016/j.scitotenv.2022.157132
[15] Geng H H, Wang F, Yan C C, et al. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal (loid) contaminated iron tailings areas. J Hazard Mater, 2022, 436: 129045.
doi: 10.1016/j.jhazmat.2022.129045
[16] 牛鸿宇, 郭佳源, 陈勃智, 等. 降解吡啶复合菌系MD1的筛选、降解特性及代谢途径. 微生物学报, 2023, 63: 4330-4343.
Niu H Y, Guo J Y, Chen B Z, et al. Screening, degradation characteristics, and metabolic pathway of an efficient pyridine- degrading bacterial consortium MD1. Acta Microbiol Sin, 2023, 63: 4330-4343 (in Chinese with English abstract).
[17] 雷欢. 一株鞘氨醇单胞菌对多环芳烃的降解特性及菲降解途径研究. 厦门大学硕士学位论文, 福建厦门, 2008.
Lei H. Study on the Characteristics of Polycyclic Aromatic Hydrocarbons Degradation by Sphingomonas Strains and the Degradation Pathway of Phenanthrene. MS Thesis of Xiamen University, Xiamen, Fujian, China, 2008 (in Chinese with English abstract).
[18] Yan Z H, Jin H, Yang X Y, et al. Effect of rhizosphere soil microbial communities and environmental factors on growth and the active ingredients of Angelica sinensis in Gansu province, China. Folia Microbiol, 2025, 70: 673-687.
doi: 10.1007/s12223-024-01210-y
[19] Lyu Z Y, Zhang H, Huang Y, et al. Drought priming at seedling stage improves photosynthetic performance and yield of potato exposed to a short-term drought stress. J Plant Physiol, 2024, 292: 154157.
doi: 10.1016/j.jplph.2023.154157
[20] Zheng H, Ma J, Huang W L, et al. Physiological and comparative transcriptome analysis reveals the mechanism by which exogenous 24-epibrassinolide application enhances drought resistance in potato (Solanum tuberosum L.). Antioxidants, 2022, 11: 1701.
doi: 10.3390/antiox11091701
[21] Qin T Y, Ali K, Wang Y H, et al. Global transcriptome and co-expression network analyses reveal cultivar-specific molecular signatures associated with different rooting depth responses to drought stress in potato. Front Plant Sci, 2022, 13: 1007866.
doi: 10.3389/fpls.2022.1007866
[22] 邓珍, 徐建飞, 段绍光, 等. PEG-8000模拟干旱胁迫对11个马铃薯品种的组培苗生长指标的影响. 华北农学报, 2014, 29(5): 99-106.
doi: 10.7668/hbnxb.2014.05.017
Deng Z, Xu J F, Duan S G, et al. Effect on growth indicators of 11 potato cultivars in vitro under PEG-8000 stress. Acta Agric Boreali-Sin, 2014, 29(5): 99-106 (in Chinese with English abstract).
[23] Qin J H, Zhang T T, Meng L L, et al. Evaluation of drought tolerance in exotic potato germplasm. J Plant Genet Resour, 2019, 20: 574-582.
[24] Qin J H, Dodd I C, Bian C S, et al. Deficit irrigation differentially modulates rhizosphere microbial community and metabolites of two potato genotypes differing in drought tolerance. J Environ Manag, 2025, 373: 123836.
doi: 10.1016/j.jenvman.2024.123836
[25] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[26] Badri D V, Vivanco J M. Regulation and function of root exudates. Plant Cell Environ, 2009, 32: 666-681.
doi: 10.1111/pce.2009.32.issue-6
[27] Stegen J C, Lin X J, Fredrickson J K, et al. Quantifying community assembly processes and identifying features that impose them. ISME J, 2013, 7: 2069-2079.
doi: 10.1038/ismej.2013.93 pmid: 23739053
[28] Alwutayd K M, Rawat A A, Sheikh A H, et al. Microbe-induced drought tolerance by ABA-mediated root architecture and epigenetic reprogramming. EMBO Rep, 2023, 24: e56754.
[29] Du L Y, Huang X L, Ding L, et al. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytol, 2023, 237: 232-250.
doi: 10.1111/nph.v237.1
[30] Wang S J, Xie X N, Che X R, et al. Host- and virus-induced gene silencing of HOG1-MAPK cascade genes in Rhizophagus irregularis inhibit arbuscule development and reduce resistance of plants to drought stress. Plant Biotechnol J, 2023, 21: 866-883.
doi: 10.1111/pbi.v21.4
[31] Yao G Q, Nie Z F, Turner N C, et al. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytol, 2021, 229: 230-244.
doi: 10.1111/nph.v229.1
[32] Xiang Y, Liu W J, Niu Y X, et al. The maize GSK3-like kinase ZmSK 1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2. Plant Cell, 2025, 37: koaf032.
[33] Yang Q, Deng X J, Liu T, et al. Abscisic acid root-to-shoot translocation by transporter AtABCG25 mediates stomatal movements in Arabidopsis. Plant Physiol, 2024, 195: 671-684.
doi: 10.1093/plphys/kiae073 pmid: 38345859
[34] Hardie D G, Ross F A, Hawley S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13: 251-262.
[35] Bittencourt P P, Alves A F, Ferreira M B, et al. Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms, 2023, 11: 502.
doi: 10.3390/microorganisms11020502
[1] Hu Cheng-Zhen, Gao Wei-Dong, Kong Bin-Xue, Wang Jian-Fei, Che Zhuo, Yang De-Long, Chen Tao. Genome-wide identification of the TaAPC11 gene family in wheat and functional characterization of TaAPC11-5B in drought stress responses [J]. Acta Agronomica Sinica, 2026, 52(1): 148-164.
[2] Tian Jia-Chun, Ge Xia, Li Shou-Qiang, Li Mei, Tian Shi-Long, Zhang Ya-Qian, Cheng Jian-Xin, Li Yu-Mei. Mechanism of low O2 and high CO2 storage environment delaying aging of potato tuber [J]. Acta Agronomica Sinica, 2026, 52(1): 262-278.
[3] Wang Ya-Zhi, Yang Biao, Ji Xiang-Lin, Shi Ying, Zhang Li-Li. Identification of drought-resistant resources and preliminary screening of drought resistant genes in diploid potatoes [J]. Acta Agronomica Sinica, 2026, 52(1): 72-84.
[4] Kong Na, Liu Tao, Liu Wen-Ting, Chen Gang, Wen Li-Chao, Deng Zhi-Chao, Guo Mei, Li Wei, Guo Yong-Feng. Cloning of the NtCEP7 gene in tobacco and functional analysis of its encoded peptide in seedling-stage drought resistance [J]. Acta Agronomica Sinica, 2026, 52(1): 249-261.
[5] Liu Hai-Bo, Zhang Lei, Wang Li-Qi, Shi Xiao-Li, Zhou Wen-Ying, Cui Guo-Xian, She Wei. Functional study of the BnGCL1 gene in ramie (Boehmeria nivea L.) in response to drought stress [J]. Acta Agronomica Sinica, 2026, 52(1): 14-27.
[6] Zhu Jin-Juan, Wang Hui-Ping, Yang Guo-Dong, Wang Yu-Cheng, Yang Chen, Wang Bin, Agustiani Nurwulan, Tu Jun-Ming, Bi Jun-Guo, Cui Ke-Hui, Huang Jian-Liang, Peng Shao-Bing, Yuan Shen. Effects of water management and variety type on grain yield and quality in ratoon rice [J]. Acta Agronomica Sinica, 2026, 52(1): 295-315.
[7] ZHUO Feng-Qi, TANG Zhen-San, LEI Yu-Jun, CHENG Li-Xiang, ZHAO Tian-Tian, LYU Tai, YANG Chen, ZHANG Feng. Screening of low glycemic potato varieties (lines) based on cooking methods and regeneration temperature [J]. Acta Agronomica Sinica, 2025, 51(9): 2538-2546.
[8] ZHU Jin-Cheng, YANG Qiu-Hua, CHENG Li-Xiang, LI Wen-Li, SHI Ming-Ming, LI Hui-Xia, ZHANG Feng. Screening of potato germplasm for resistance to Meloidogyne incognita and analysis of related physiological responses [J]. Acta Agronomica Sinica, 2025, 51(9): 2307-2317.
[9] YIN Li-Na, ZHANG Rui, CHEN Guo-Huan, BAI Lei, LI Jun, GUO Hua-Chun, YANG Fang. Comparison of wound healing capacity of tubers of different potato varieties [J]. Acta Agronomica Sinica, 2025, 51(9): 2399-2411.
[10] LI Yun-Xiang, GUO Qian-Qian, HOU Wan-Wei, ZHANG Xiao-Juan. Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA [J]. Acta Agronomica Sinica, 2025, 51(9): 2387-2398.
[11] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[12] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[13] HE Peng-Xu, YAO Li-Rong, CHEN Yuan-Ling, YAN Yan, ZHANG Hong, WANG Jun-Cheng, LI Bao-Chun, YANG Ke, SI Er-Jing, MENG Ya-Xiong, MA Xiao-Le, WANG Hua-Jun. Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress [J]. Acta Agronomica Sinica, 2025, 51(9): 2412-2432.
[14] JIA Xiao-Xia, QI En-Fang, WEN Guo-Hong, MA Sheng, HUANG Wei, LYU He-Ping, LI Jian-Wu, QU Ya-Ying, DING Ning. Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’ [J]. Acta Agronomica Sinica, 2025, 51(9): 2285-2294.
[15] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!