Yu Yong-Chao,Liu Ming,Jin Rong,Zhao Peng,Zhang Qiang-Qiang,Wang Jing,Zhu Xiao-Ya,Tang Zhong-Hou*
| [1] Alam M K. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends Food Sci Technol, 2021, 115: 512–529.
[2] 李强, 赵海, 靳艳玲, 等. 中国甘薯产业助力国家粮食安全的分析与展望. 江苏农业学报, 2022, 38: 1484–1491. [3] Zhang Y L, Tang Y Q, Wang Z H, et al. Optimizing nitrogen and irrigation application for drip irrigated sweet potato with plastic film mulching in Eastern China. Agric Water Manag, 2024, 302: 108997. [4] Kitaya Y, Hirai H, Endo R, et al. Effects of water contents and CO2 concentrations in soil on growth of sweet potato. Field Crops Res, 2013, 152: 36–43. [5] 李韦柳, 唐秀桦, 韦民政, 等. 遮阴对淀粉型甘薯生长发育及生理特性的影响. 热带作物学报, 2017, 38:258–263. Li W L, Tang X H, Wei M Z, et al. Effects of shading on growth, development and physiological characteristics of starchy sweet potato. Chin J Trop Crops, 2017, 38: 258–263 (in Chinese with English abstract). [6] Zhang Z, Xu X M, Jin M H, et al. A new curve of critical leaf nitrogen concentration based on the maximum root dry matter for diagnosing nitrogen nutritional status of sweet potato. Eur J Agron, 2024, 156: 127176. [7] Taranet P, Harper S, Kirchhof G, et al. Growth and yield response of glasshouse- and field-grown sweet potato to nitrogen supply. Nutr Cycl Agroecosyst, 2017, 108: 309–321. [8] Shu X, Jin M H, Wang S Y, et al. The effect of nitrogen and potassium interaction on the leaf physiological characteristics, yield, and quality of sweet potato. Agronomy, 2024, 14: 2319. [9] Duan W, Wang Q, Zhang H, et al. Comparative study on carbon-nitrogen metabolism and endogenous hormone contents in normal and overgrown sweet potato. S Afr J Bot, 2018, 115: 199–207. [10] Duan W X, Zhang H Y, Wang Q M, et al. Regulation of root development in nitrogen-susceptible and nitrogen-tolerant sweet potato cultivars under different nitrogen and soil moisture conditions. BMC Plant Biol, 2023, 23: 454. [11] Duan W X, Zhang H Y, Xie B T, et al. Nitrogen utilization characteristics and early storage root development in nitrogen-tolerant and nitrogen-susceptible sweet potato. Physiol Plant, 2021, 173: 1090–1104.
[12] 段文学, 张海燕, 解备涛, 等. 甘薯茎叶徒长对氮肥的响应及其表征指标研究. 山东农业科学, 2018, 50(2): 33–37. [13] Wu X L, Du A Q, Zhang Y F, et al. Potassium phosphite inhibits excessive growth of new shoots in peach trees by regulating the biosynthesis of lignin and gibberellin. Sci Hortic, 2025, 344: 114112.
[14] 伍若彤. 西双版纳黄瓜优异性状的分子标记辅助选择及CsSH1基因编辑应用. 南京农业大学硕士学位论文, 江苏南京, 2021. [15] Zhang C L, Wu Y J, Liu X R, et al. Pivotal roles of ELONGATED HYPOCOTYL5 in regulation of plant development and fruit metabolism in tomato. Plant Physiol, 2022, 189: 527–540. [16] Arisha M H, Ahmad M Q, Tang W, et al. RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato. Sci Rep, 2020, 10: 12573. [17] Arisha M H, Aboelnasr H, Ahmad M Q, et al. Transcriptome sequencing and whole genome expression profiling of hexaploid sweet potato under salt stress. BMC Genomics, 2020, 21: 197. [18] Dong T T, Zhu M K, Yu J W, et al. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). BMC Plant Biol, 2019, 19: 136. [19] 刘明, 靳容, 于永超, 等. 徐紫薯8号优选栽插密度与氮钾施肥方案研究. 中国土壤与肥料, 2025(2): 145–154. Liu M, Jin R, Yu Y C, et al. Research on optimal planting density and nitrogen and potassium fertilization scheme of Xuzishu 8. Soil Fert Sci China, 2025(2):145–154 (in Chinese with English abstract).
[20] 付宇新, 胡燕, 王莉, 等. 植物和食品全氮含量测定方法的改进和优化. 安徽农业科学, 2021, 49(4): 198–200. [21] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408. [22] Chen C J, Wu Y, Li J W, et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742. [23] Lyu Z F, He W C, Lin L Z, et al. Development of critical shoot and root N curves for diagnosing sweet potato shoot and root N status. Field Crops Res, 2020, 257: 107927.
[24] 徐聪, 李欢, 史衍玺. 不同施氮量对甘薯氮素吸收与分配的影响. 水土保持学报, 2014, 28(2): 149–153. [25] Smith M R, Rao I M, Merchant A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front Plant Sci, 2018, 9: 1889. [26] Golovko T K, Tabalenkova G N. Source–sink relationships in potato plants. Russ J Plant Physiol, 2019, 66: 664–671. [27] Duan W X, Wang Q M, Zhang H Y, et al. Differences between nitrogen-tolerant and nitrogen-susceptible sweet potato cultivars in photosynthate distribution and transport under different nitrogen conditions. PLoS One, 2018, 13: e0194570.
[28] 柴沙沙. 甘薯不同品种碳氮代谢特性及与产量形成的关系. 山东农业大学硕士学位论文, 山东泰安, 2013. [29] Zhang Y J, Fernie A R. The role of TCA cycle enzymes in plants. Adv Biol, 2023, 7: e2200238. [30] Araújo W L, Martins A O, Fernie A R, et al. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Front Plant Sci, 2014, 5: 552. [31] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437–468.
[32] 周鑫鹏. 外源独脚金内酯调节弱光胁迫下黄瓜幼苗下胚轴徒长的作用机制. 南京农业大学硕士学位论文, 江苏南京, 2022. [33] Colebrook E H, Thomas S G, Phillips A L, et al. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol, 2014, 217: 67–75. [34] Davière J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147–1151. [35] Illouz-Eliaz N, Ramon U, Shohat H, et al. Multiple gibberellin receptors contribute to phenotypic stability under changing environments. Plant Cell, 2019, 31: 1506–1519. [36] Ueguchi-Tanaka M, Nakajima M, Katoh E, et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140–2155. [37] Harris J C, Hrmova M, Lopato S, et al. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol, 2011, 190: 823–837. [38] Tan W R, Han Q, Li Y, et al. A HAT1-DELLA signaling module regulates trichome initiation and leaf growth by achieving gibberellin homeostasis. New Phytol, 2021, 231: 1220–1235. [39] Tan W R, Zhang D W, Zhou H P, et al. Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. PLoS Genet, 2018, 14: e1007336. [40] Zhang S P, Zheng D Y, Gao Y Q, et al. The TIFY transcription factor ZmJAZ13 enhances plant tolerance to drought and salt stress by interacting with ZmbHLH161 and ZmA0A1D6GLB9. Plant Sci, 2025, 352: 112388. [41] Li Y R, Zhang Q, Wang L M, et al. New insights into the TIFY gene family of Brassica napus and its involvement in the regulation of shoot branching. Int J Mol Sci, 2023, 24: 17114. [42] Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, et al. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot, 2013, 64: 445–458. [43] Zhou X G, Wang J, Peng C F, et al. Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environ, 2016, 39: 1381–1392. [44] He Z, Wang Z Y, Li J, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 2000, 288: 2360–2363. [45] Li J M, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90: 929–938. [46] Bowles D, Lim E K, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol, 2006, 57: 567–597. [47] Sun Y F, Ji K, Liang B, et al. Suppressing ABA uridine diphosphate glucosyltransferase (SlUGT75C1) alters fruit ripening and the stress response in tomato. Plant J, 2017, 91: 574–589. [48] Tezuka D, Matsuura H, Saburi W, et al. A ubiquitously expressed UDP-glucosyltransferase, UGT74J1, controls basal salicylic acid levels in rice. Plants, 2021, 10: 1875. [49] Sauer M, Robert S, Kleine-Vehn J. Auxin: simply complicated. J Exp Bot, 2013, 64: 2565–2577. [50] Fukui K, Hayashi K I. Manipulation and sensing of auxin metabolism, transport and signaling. Plant Cell Physiol, 2018, 59: 1500–1510. [51] Moreno-Piovano G S, Moreno J E, Cabello J V, et al. A role for LAX2 in regulating xylem development and lateral-vein symmetry in the leaf. Ann Bot, 2017, 120: 577–590. |
| [1] | ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500. |
| [2] | JI Bai-Lu, SUN Yi-Wen, LIU Wan-Feng, QIAN Ya-Xin, JIANG Cai-Hong, GENG Rui-Mei, LIU Dan, CHENG Li-Rui, YANG Ai-Guo, HUANG Li-Yu, LI Xiao-Xu, PU Wen-Xuan, GAO Jun-Ping, ZHANG Qiang, WEN Liu-Ying. Functional verification of the key gene NtLPAT involved in lipid biosynthesis in tobacco [J]. Acta Agronomica Sinica, 2025, 51(9): 2527-2537. |
| [3] | HE Hong-Li, ZHANG Yu-Han, YANG Jing, CHENG Yun-Qing, ZHAO Yang, LI Xing-Nuo, SI Hong-Liang, ZHANG Xing-Zheng, YANG Xiang-Dong. Creation and physiological analysis of an e1-as gene mutant in soybean [J]. Acta Agronomica Sinica, 2025, 51(8): 2228-2239. |
| [4] | YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513. |
| [5] | WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899. |
| [6] | YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754. |
| [7] | ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631. |
| [8] | SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567. |
| [9] | ZHU Can-Can, LI Jun-Xia, JING Ya, FU Sen-Jie, QIN Na, WANG Chun-Yi, DAI Shu-Tao, WEI Xin, ZHANG Cheng-Yang. Physiological response and transcriptome analysis of foxtail millet with different shading tolerances under shading stress [J]. Acta Agronomica Sinica, 2025, 51(12): 3211-3223. |
| [10] | WEI Qi, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, TANG Huai-Jun, LIU Cheng, WANG Tian-Yu, LI Yu, LU Yun-Cai, LI Chun-Hui. Identifying of excellent drought-tolerant gene resources based on drought- tolerant maize inbred line SL001 [J]. Acta Agronomica Sinica, 2025, 51(12): 3171-3183. |
| [11] | XU Rui, HE Miao-Hua, WANG Hao, LI Wei, REN Jie, XIA Zhi-Qiang. Spatial transcriptomic analysis of soybean embryonic responses to X-ray irradiation [J]. Acta Agronomica Sinica, 2025, 51(12): 3121-3132. |
| [12] | JU Jian-Ye, YANG Liu, CHEN Hao, KANG Lei, XIA Shi-Tou, LIU Zhong-Song. Single-nucleus transcriptome analysis reveals the cellular differentiation trajectories and molecular mechanisms underlying yellow seed coat formation in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(11): 2860-2874. |
| [13] | ZHAO Hui-Xia, GUO Yan-Li, ZHENG Yu-Ling, HE Ling, CHEN Rui, WANG Shan-Shan, ZENG Chang-Li, ZOU Jun, SHEN Jin-Xiong, FU Ting-Dong, LIU Xiao-Yun, WAN He-Ping. Differential gene expression analysis of response to alkaline salt stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(11): 3105-3118. |
| [14] | WANG Chen, HE Dan, YAO Min, QIU Ping, HE Xin, XIONG Xing-Hua, KANG Lei, LIU Zhong-Song, QIAN Lun-Wen. Transcriptome-based identification of flowering candidate genes and functional characterization of BnaCOR27 in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(10): 2693-2704. |
| [15] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
|
||