Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (02): 280-285.doi: 10.3724/SP.J.1006.2011.00280

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization and Gene Mapping of a Spikelet Mutant multi-floret 1(mf1) in Rice

LI Yun-Feng,YANG Zheng-Lin,LING Ying-Hua,WANG Nan,REN De-Yong,WANG Zeng,HE Guang- Hua*   

  1. Rice Research Institute, Southwest University / Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture, Chongqing 400716, China
  • Received:2010-07-08 Revised:2010-10-05 Online:2011-02-12 Published:2010-12-15
  • Contact: 何光华, E-mail: hegh@swu.edu.cn

Abstract:  Rice has a determinate spikelet producing a fertile floret above two sterile lemmas. In this study, we reported a multi-floret 1 (mf1) mutant, in which spikelet lost the determinacy and produced two or more florets in an alternate phyllotaxy above sterile lemmas. In addition, all the florets showed the defects of floral organs development, such as the elongated leafy lemma, and decreased lodicule/stamen. Genetic analysis indicated that the mf1 trait is controlled by a single recessive gene. By bulked segregation analysis (BSA) and rice SSR molecular maker, the mf1 locus was located between PSSR3 and RM7576 on chromosome 3 with a 34 kb physical distance containing four annotated genes. This result provided a foundation of map-based cloning and function analysis of MF1 gene.

Key words: Rice, Spikelet, multi floret 1, Determinacy

[1]Coen E S, Meyerowitz E M. The war of the whorls genetic interactions controlling flower development. Nature, 1991, 353: 31–37
[2]Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203–209
[3]Jack T. Molecular and genetic mechanisms of floral control. Plant Cell, 2004, 16: 1–17
[4]Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1, DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718
[5]Whipple C J, Ciceri P, Padilla C M, Ambrose B A, Bandong S L, Schmidt R J. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 2004, 131: 6083–6091
[6]Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell, 2006, 18: 15–28
[7]Clifford H T. Spikelet and floral morphology. In: Soderstrom T R, Hilu K W, Campbell C S, Barkworth M E, eds. Grass Systematics and Evolution. Smithsonian Institution Press, Washington DC, 1987. pp 21–30
[8]Malcomber S T, Preston J C, Reinheimer R, Kossuth J, Kellogg E A. Developmental gene evolution and the origin of grass inflorescence diversity In: Leebens-Mack J, Soltis D E, Soltis P S, eds. Developmental Genetics of the Flower. Academic Press, New York, 2006. pp 383–421
[9]Lee D Y, Lee J, Moon S, Park S Y, An G. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J, 2007, 49: 64–78
[10]Chuck G, Meeley R B, Hake, S. The control of maize spikelet meristem fate by the APETELA2-like gene indeterminate spikelet1. Genes Dev, 1998, 12: 1145–1154
[11]Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130: 3841–3850
[12]Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 2002, 298: 1238–1241
[13]Xiao H, Tang J F, Li Y F, Wang W M, Li X B, Jin L, Xie R, Luo H F, Zhao X F, Meng Z, He G H, Zhu L H. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59: 789–801
[14]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[15]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325
[16]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing)(遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)
[17]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 259: 297–607
[18]Krizek B A, Fletcher J C. Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet, 2005, 6: 688–698
[19]Sentoku N, Kato H, Kitano H, Imai R. OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy. Mol Genet Genomics, 2005, 273: 1–9
[20]Luo Q, Zhou K, Zhao X, Zheng Q, Xia H W, Xu J, Wu X, Yang H, Zhu L. Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta, 2005, 221: 222–230
[21]Pozzi C, Faccioli P, Terzi V, Stanca A M, Cerioli S, Castiglioni P, Fink R, Capone R, Müller K J, Bossinger G, Rohde W, Salamini F. Genetics of mutations affecting the development of a barley floral bract. Genetics, 2000, 154: 1335–1346
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!