Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (12): 2198-2205.
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CAI Jian1,ZHANG Qui-Quan2,*
[1]Hanson M R, Conde M F. Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int Rev Cytol, 1985, 94: 213-267[2]Kaul M L H. Male sterility in higher plants. In: Monograph on Theoretical and Applied Genetics, 1988, Vol. 10. Berlin: Springer-Verlag [3]Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male sterile plants. Proc Natl Acad Sci USA, 2002, 99: 10887-10892[4]Yuan L P, Virmani S S. Status of hybrid rice research and development. In: Smith W H, Bostian L R, Cervantes E, eds. Hybrid Rice. Manila, Philippines: International Rice Research Institute, 1988. pp 7-24[5]Xie J K, Zuang J Y, Fan Y Y, Tu G Q., Xia Y W, Zheng K L. Mapping of fertility restoring genes with main effects and epistatic effects for CMS-DA in rice. Acta Genet Sin, 2002, 29: 565-570[6]Shinjyo C. Cytoplasmic-genetic male sterility in cultivated rice (Oryza sativa L.): II. The inheritance of male sterility. Jpn J Genet, 1969, 44:149-156[7]Rao Y S. Cytohistology of cytoplasmic male sterile lines in hybrid rice. In: Smith W H, Bostian L R, Cervantes E, eds. Hybrid Rice. Manila, Philippines: International Rice Research Institute, 1988. pp 115-128[8]Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophytic development. Plant Cell, 2004, 16: S154-S169[9]Zhang G, Bharaj T S, Virmani S S, Huang N. Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor Appl Genet, 1997, 94: 27-33[10]Li S, Yang D C, Zhu Y G. Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol, 2007, 49: 791-804[11]Fujii S, Toriyama K. Suppressed expression of RETROGRADE- REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA, 2009, 106: 9513-9518[12]Yao F Y, Xu C G, Yu S B, Li J X, Gao Y J, Li X H, Zhang Q. Mapping and genetic analysis of two fertility restorer loci in the wild abortive cytoplasmic male sterility system of rice (Oryza sativa L.). Euphytica, 1997, 98: 183-187[13]Zhang Q Y, Liu Y G, Mei M T. Molecular mapping of the fertility restorer gene Rf4 for WA cytoplasmic male sterility. Acta Genet Sin, 2002, 29:1001-1004[14]Komori T, Yamamoto T, Takemori N, Kashihara M, Matsushima H, Nitta N. Fine genetic mapping of the restorer gene, Rf-1 that restores the BT-type cytoplasmic male sterility in rice (Oryza sativa L.) by PCR based markers. Euphytica, 2003, 129: 241-247[15]Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet, 2004, 108: 1449-1457[16]Liu X Q, Xu X, Tan Y P, Li S Q, Hu J, Huang J Y, Yang D C, Li Y S, Zhu Y G. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativa L.). Mol Gen Genomics, 2004, 271: 586-594[17]Wang Z H, Zou Y J, Li X Y, Zhang Q Y, Chen L T, Wu H, Su D H, Chen Y L, Guo J X, Luo D, Long Y M, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18: 676-687[18]Sheeba N K, Viraktamath B C, Sivaramakrishnan S, Gangashetti M G, Khera P, Sundaram R M. Validation of molecular markers linked to fertility restorer gene(s) for WA-CMS lines of rice. Euphytica, 2009, 167: 217-227[19]Ngangkham U, Parida S K, De S, Kumar A R, Singh A K, Singh N K, Mohapatra T. Genic markers for wild abortive (WA) cytoplasm based male sterility and its fertility restoration in rice. Mol Breed, 2010, 26: 275-292[20]Zhang G Q, Zeng R Z, Zhang Z M, Ding X H, Li W T, Liu G M, He F H, Tulukdar A, Huang C F, Xi Z Y, Qin L J, Shi J Q, Zhao F M, Feng M J, Shan Z L, Chen L, Guo X Q, Zhu H T, Lu Y G. The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl, 2004, 21:85-87[21]He F-H(何风华), Xi Z-Y(席章营), Talukdar A, Zhang G-Q(张桂权). Identification of QTLs for plant height and its components by using single segment substitution lines in rice (Oryza sativa L.). Rice Sci (水稻科学), 2005, 12(3): 151-156 (in Chinese with English abstract)[22]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 49: 476-484[23]Liu G-M(刘桂富), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci (中国水稻科学), 2003, 17: 201-204 (in Chinese with English abstract)[24]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghiran R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Jellstrom R F, Declerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199-207[25]Zheng K L, Huang N, Bennett J, Khush G S. PCR based marker-assisted selection in rice breeding. In: IRRI Discussion Paper Series. No. 12. Manila, Philippines: International Rice Research Institute, 1995[26]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSPL) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607[27]Hospital F. Marker-assisted backcross breeding: a case study in genotype building theory. In: Kang M S ed. Quantitative Genetics, Genomics and Plant Breeding. Wallingford, UK: CABI Publishing, 2002[28]Zhang G-Q(张桂权), Liu Y-G(卢永根). Genetic studies of the hybird sterility in cultivated rice (Oryza sativa): I. Diallel analysis of the hybird sterility among isogenic F1 sterile lines. Chin J Rice Sci (中国水稻科学), 1989, 3: 97-101 (in Chinese with English abstract)[29]Gabay-Laughnan S, Laughnan J R. Male sterility and restorer genes in maize. In: Freeling M, Walbot V, eds. The Maize Handbook. New York: Springer, 1994. pp 418-423[30]Taylor D R, Olson M S, McCauley D E. A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics, 2001, 158: 833-841[31]Van Damme J M M, Hundscheid M P J, Ivanovic S, Koelewijn H P. Multiple CMS-restorer gene polymorphism in gynodioecious Plantago coronopus. Heredity, 2004, 93: 175-181[32]Fu H W, Xue Q Z. Analysis of restoring genes of three type of cytoplasmic male sterility in rice. Mol Plant Breed, 2004, 2: 336-341[33]Govinda R K, Virmani S S. Genetics of fertility restoration of ‘WA’ type cytoplasmic male sterility in rice. Crop Sci, 1988, 28: 787-792[34]Zhuang J-Y(庄杰云), Fan Y-Y(樊叶杨), Wu J-L(吴建利), Rao Z-M(饶志明), Xia Y-W(夏英武), Zheng K-L(郑康乐). Maping genes for rice CMS-WA fertility restoration. Acta Genet Sin (遗传学报), 2001, 28(2): 129-134 (in Chinese with English abstract) [35]Xu C-G(徐才国), Tang W-J(唐为江), Xing Y-Z(邢永忠). Separate restorability evaluation of two fertility restorer genes in the rice restorer line, Minghui 63. Mol Plant Breed (分子植物育种), 2003, 1(4): 497-501 (in Chinese with English abstract) [36]Pradhan S B, Jachuck P J. Genetics of fertility restoration of elite lines for different cytoplasmic male sterile sources in rice. Oryza, 1999, 36: 374-376[37]Tao D Y, Xu P, Li J, Hu F Y, Yang Y Q, Zhou J W, Tan X L, Jones M P. Inheritance and mapping of male sterility restoration gene in upland japonica restorer lines. Euphytica, 2004, 138: 247-254[39]Singh A K, Mahapatra T, Prabhu K V, Singh V P, Zaman F U, Mishra G P, Nandakumar N, Joseph M, Gopalakrishnan S, Aparajita G, Tyagi N K, Prakash P, Sharma R K, Shab U S, Singh S K. Application of molecular markers in rice breeding: progress at IARI. In: Advances in Marker Assisted Selection Workshop. Trainee’s manual, Handouts and references, 2005 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|