Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (01): 21-28.doi: 10.3724/SP.J.1006.2013.00021
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
FU Yang,YUAN Dong-Dong,HU Wen-Jing,CAI Cai-Ping,GUO Wang-Zhen*
[1]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742[2]Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162[3]Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37–44[4]Liu G-M(刘冠明), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin Rice Sci (中国水稻科学), 2003, 17(3): 201–204 (in Chinese with English abstract)[5]Pan J-J(潘家驹). Cotton Breeding (棉花育种学). Beijing: China Agriculture Press, 1998. pp 60–210 (in Chinese)[6]Kohel R J, Endrizzi J E, White T G. An evaluation of Gossypium barbadense L. chromosome 6 and 17 in the G. hirsutum L. genome. Crop Sci, 1977, 17: 404–406[7]Ma J-Z(马家璋), Kohe R J. An evaluation of six substituton lines of Gossypium barbadense chromosome in G. hirsutum. Acta Agron Sin (作物学报), 1983, 9(3): 145–150 (in Chinese with English abstract)[8]Ren L H, Guo W Z, Zhang T Z. Identification of QTLs affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Bot Sin, 2002, 44(7): 815–820[9]Wang P, Ding Y Z, Lu Q X, Guo W Z, Zhang T Z. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chin Sci Bull, 2008, 53(10): 1512–1517[10]Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet, 2012, 124: 1415–1428[11]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9: 314[12]Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101[13]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhan H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88:93-104[14]Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260[15]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13[16]Zhu Y-J(朱亚娟), Wang P(王鹏), Guo W-Z(郭旺珍), Zhang T-Z (张天真). Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agron Sin (作物学报), 2010, 36(8): 1318–1323 (in Chinese with English abstract)[17]Endrizzi J E. Linkage analysis of open bud and yellow petal (Y1) in cotton. Genome, 1991, 34: 461–63[18]Qian N, Zhang X W, Guo W Z, Zhang T Z. Fine mapping of open-bud duplicate genes in homoelogous chromosomes of tetraploid cotton. Euphytica, 2009, 165: 325–331[19]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L. ) panicle number. Theor Appl Genet, 2001, 103: 104–111[20]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Geneties, 1996, 143: 1807–1817[21]Lin Z-X(林忠旭), Feng C-H(冯常辉), Guo X-P(郭小平), Zhang X-L(张献龙). Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in upland cotton. Sci Agri Sin (中国农业科学), 2009, 42(9): 3036–3047 (in Chinese with English abstract)[22]Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J , Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet, 2007, 115: 87–100[23]Wang Z-Q(王智权), Liu X(刘喜), Jiang L(江玲), Yang C(杨超), Liu S-J(刘世家), Chen L-M(陈亮明), Zhan H-Q(翟虎渠), Wan J-M(万建民). QTL detection for flag leaf morphological traits of rice in a population of chromosome segment substitution lines. J Nanjing Agri Univ (南京农业大学学报), 2010, 33(6): 1–6 (in Chinese with English abstract)[24]Ou-Yang L(欧阳恋). Identification, mapping and pyramiding of genes for grain quality based on SSSLs. MS thesis of South China Agricultural University, 2006 (in Chinese with English abstract)[25]Huang Y-F(黄益峰). Identification, pyramiding and epistasis analysis of the rice grain shape and grain weight QTL. MS thesis of South China Agricultural University, 2006 (in Chinese with English abstract) |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[4] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[5] | MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758. |
[6] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[7] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[8] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[9] | WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521. |
[10] | LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401. |
[11] | HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196. |
[12] | WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859. |
[13] | HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982. |
[14] | WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586. |
[15] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
|