[1]Yang Z-M(杨作民), Tang B-R(唐伯让), Shen K-Q(沈克全), Xia X-C(夏先春). A strategic problem in wheat resistance breeding-building and utilization of sources of second-lines resistance against rusts and mildew in China. Acta Agron Sin (作物学报), 1994, 20(4): 385–394 (in Chinese with English abstract)
[2]Xiao M, Song F, Jiao J, Wang X, Xu H, Li H. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403
[3]Xue F(薛飞), Wang C-Y(王长有), Zhang L-H(张丽华), Zhang H(张宏), Li H(李浩), Wang Y-J(王亚娟), Liu X-L(刘新伦), Ji W-Q(吉万全). Chromosome location and molecular mapping of powdery mildew resistance gene PmAS846 originated from wild Emmer (Triticum turgidum var. dicoccoides). Acta Agron Sin (作物学报), 2012, 38(4): 589–595 (in Chinese with English abstract)
[4]Huang X Q, Hsam S L K, Zeller F J. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.): IX. Cultivars, landraces and breeding lines grown in China. Plant Breed, 1997, 116: 233–238
[5]Li Z-S(李振声). Wide Cross in Wheat(小麦远缘杂交). Beijing: Science Press, 1985. pp 52–83 (in Chinese)
[6]Fedak G, Han F. Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res. 2005, 109: 360–367
[7]Lin X-H(林小虎), Wang L-M(王黎明), Li X-F(李兴锋), Lu W-H(陆文辉), Zhao F-T(赵逢涛), Li W-C(李文才), Gao J-R(高居荣), Wang H-G(王洪刚). Identification of octoploid Trititrigia and disomic addition line with powdery mildew resistance. Acta Agron Sin (作物学报), 2005, 31(8): 1035–1040 (in Chinese with English abstract)
[8]Liu S B, Wang H G. Characterization of a wheat-Thinopyron intermedium substitution line with resistance to powdery mildew. Euphytica, 2005, 143: 229–233
[9]He R, Chang Z, Yang Z, Liu Z, Zhan H, Zhang X, Liu J. Inheritance and mapping of a powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118: 1173–1180
[10]Luo P, Luo H, Chang Z, Zhang H, Zhang M, Ren Z. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet, 2009, 118: 1059–1064
[11]Chang Z, Zhang X, Yang Z, Zhan H, Li X, Liu C, Zhang C. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010, 147: 304–312
[12]Sheng B-Q(盛宝钦), Duan X-Y(段霞瑜). Modification on the evaluation methods of 0-9 level of powdery mildew infection on wheat. Beijing Agric Sci (北京农业科学), 1991, 9(1): 37–39 (in Chinese)
[13]Sheng B-Q(盛宝钦). Using infection type records the wheat powdery mildew at seedling stage. Plant Protection (植物保护), 1988, 14(1): 49 (in Chinese)
[14]Sharp P J, Kreis M, Shewry P R, Gale M D. Location of β-amylase sequence in wheat and its relatives. Theor Appl Genet, 1988, 75: 289–290
[15]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (遗传), 2003, 25(3): 317–321 (in Chinese with English abstract)
[16]Somers D J, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114
[17]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457–463
[18]Zhu Z-D(朱振东), Zhou R-H(周荣华), Dong Y-C(董玉琛), Jia J-Z(贾继增). Analysis of powdery mildew resistance genes in some tetraploid wheat-Aegilops amphidiploids and their parents. J Plant Genet Resour (植物遗传资源学报), 2003, 4(2): 137–143 (in Chinese with English abstract)
[19]Zhang X Y, Koul A, Petroski R, Ouellet T, Fedak G, Dong Y S, Wang R R C. Molecular verification and characterization of BYDV-resistant germplasms derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theor Appl Genet, 1996, 93: 1033–1039
[20]Chang Z-J(畅志坚). Production and Molecular Cytogenetic Characterization of Several Thinopyrum intermedium-Derived Wheat Germplasm Lines. PhD Dissertation of Sichuan Agricultural University, 1999. pp 13–88 (in Chinese with English abstract)
[21]Qi L, Friebe B, Zhang P, Gill B S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res, 2007, 15: 3–19
[22]Lukaszewski A J, Lapinski B, Rybka K. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res, 2005, 109: 373–377
[23]Kuraparthy V, Sood S, Chhuneja P, Dhaliwal H S, Kaur S, Bowder R L, Gill B S. A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci, 2007, 47: 1995–2003
[24]Kuraparthy V, Chhuneja P, Dhaliwal H S, Kaur S, Bowder R L, Gill B S. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet, 2007, 114: 1379–1389
[25]Chen Q, Conner R L, Laroche A, Ahmad F. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum-Thinopyrum intermedium hybrids. Theor Appl Genet, 2001, 102: 847–852
[26]Zhang X-Y(张学勇), Dong Y-C(董玉琛), Yang X-M(杨欣明). Cytogenetic research on hybrids of Triticum with both Thinopyrum ponticum and Th. intermedium as well as their derivatives: III. Primary detection of genetic base for introgression of useful genes from the two alien species to wheat. Acta Genet Sin (遗传学报), 1995, 22(3): 217–222 (in Chinese with English abstract)
[27]Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 223–230 |