Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (05): 761-768.doi: 10.3724/SP.J.1006.2014.00761

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Validation and Dissection of Minor QTL qTGW1.2 for Thousand-Grain Weight in Rice (Oryza sativa L.)

CHEN Yu-Yu1,2,ZHU Yu-Jun1,ZHANG Hong-Wei1,WANG Lin-Lin1,FAN Ye-Yang1,ZHUANG Jie-Yun1,*   

  1. 1 Chinese National Center for Rice Improvement / State Key Laboratory of Rice Biology / China National Rice Research Institute, Hangzhou 310006, China; 2 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China?
  • Received:2013-11-07 Revised:2014-01-12 Online:2014-05-12 Published:2014-03-24
  • Contact: 庄杰云, E-mail: jz1803@hzcnc.com, Tel: 0571-63370369
  • About author:庄杰云, E-mail: jz1803@hzcnc.com, Tel: 0571-63370369

Abstract:

Validation and dissection of a minor QTL qTGW1.2 for 1000-grain weight located on the long arm of rice chromosome 1 was reported. Following previous mapping result, two plants carrying heterozygous segments covering the intervals RM11621-RM297 and RM212-RM265, respectively, were selected from the Zhenshan 973/Milyang 46 BC2F7 population. Two sets of near isogenic lines (NILs) in the BC2F8:9 generation were established. QTL analysis using the two NIL sets delimited qTGW1.2 to a region flanked by RM11730 and RM11885. Then, five BC2F9 plants with sequential heterozygous segments overlapped in the region covering qTGW1.2 were selected. From the selfed seeds five BC2F10 populations were constructed and used for QTL analysis by Windows QTL Cartographer 2.5. QTLs for 1000-grain weight were detected in each of the five populations. The additive effect ranged from 0.13 to 0.38 g with the enhancing alleles derived from Milyang 46. Based on comparison of the segregating regions among the five populations, we separated qTGW1.2 into two QTLs, of which qTGW1.2a displaying additive genetic action was located in a 934 kb region flanked by RM11730 and RM11762, and qTGW1.2b displaying positive over-dominance was located in a 2.1 Mb region flanked by RM11800 and RM11885.

Key words: Rice (Oryza sativa L.), Quantitative trait locus, 1000-grain weight, Heading date, Near isogenic line

[1]Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci, 2013, 18: 218?226



[2]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164?1171



[3]Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012, 22: 1666–1680



[4]Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 109: 21534?21539



[5]Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707?711



[6]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623?630



[7]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023?1028



[8]Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199?1209



[9]Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266?1269



[10]Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950?954



[11]Hu Z J, He H H, Zhang S Y, Sun F, Xin X Y, Wang W X, Qian X, Yang J S, Luo X J. A Kelch motif-containing serine/threonine protein phosphatease determines the large grain QTL trait in rice. J Integr Plant Biol, 2012, 54: 979-990



[12]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226-9231



[13]Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248-257



[14]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622



[15]Guo L, Wang K, Chen J Y, Huang D R, Fan Y Y, Zhuang J Y. Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (Oryza sativa L.). Crop J, 2013, 1: 70-76



[16]Zheng K L, Huang N, Bennett J, Khush G S. PCR-based marker-assisted selection in rice breeding. In: IRRR Discussion Paper Series No.1. Manila: IRRI, 1995. pp 1-24



[17]SAS Institute Inc. SAS/ STAT User’s Guide. Cary, NC: SAS Institute, 1999



[18]Dai W M, Zhang K Q, Wu J R, Wang L, Duan B W, Zheng K L, Cai R, Zhaung J Y. Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Euphytica, 2008, 160: 317-324



[19]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA, 2011



[20]Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 27: 205-233



[21]Koumproglou R, Wilkes T M, Townson P, Wang X Y, Beynon J, Pooni H S, Newbury H J, Kearsey M J. STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J, 2002, 31: 355-364



[22]Maonna L, Lin H X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice . Theor Appl Genet, 2002, 104: 772-778



[23]Wu J R, Fan F J, Du J H, Fan Y Y, Zhuang J Y. Dissection of QTLs for hull silicon content on the short arm of rice chromosome 6. Rice Sci, 2010, 17(2): 99-104



[24]张振华, 郭梁, 朱玉君, 樊叶杨, 庄杰云. 籼稻不同定位群体抽穗期和株高的QTL比较研究. 中国农业科学, 2011, 44: 3069-3077 



Zhang Z H, Guo L, Zhu Y J, Fan Y Y, Zhuang J Y. Mapping of quantitative trait loci for heading date and plant height in two populations of indica rice. Sci Agric Sin, 2011, 44: 3069-3077 (in Chinese with English abstract)



[25]王业文, 郭明星, 冯志峰, 周凯, 王俊义, 王保军, 闫理峰. 籼稻骨干亲本产量相关性状遗传效应. 四川农业大学学报, 2012, 30: 134-139



Wang Y W, Guo M X, Feng Z F, Zhou K, Wang J Y, Wang B J, Yan L F. Study on the genetic effects of yield-related traits in major parental lines of indica rice. J Sichuan Agric Univ, 2012, 30: 134-139 (in Chinese with English abstract)



[26]肖经鸿, 孟秋成, 曹克勤, 刘建丰. 杂交稻及其亲本千粒重与产量的关系研究. 湖南农业科学, 2009, (3): 7-8



Xiao J H, Meng Q C, Cao K Q, Liu J F. A study on the relationship between 1000-grain weight and yield in hybrid rice. Hunan Agric Sci, 2009, (3): 7-8 (in Chinese with English abstract)



[27]陈达刚, 周新桥, 李丽君, 张旭, 陈友订. 超级稻产量构成因素与产量的关系研究. 广东农业科学, 2008, (7): 3-6



Chen D G, Zhou X Q, Jun L L, Zhang X, Chen Y D. Study on the relationship between yield components and yield of super rice. Guangdong Agric Sci, 2008, (7): 3-6 (in Chinese with English abstract)



[28]龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 2147-2158



Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147-2158 (in Chinese with English abstract)



[29]Liu T M, Zhang Y S, Xue W Y, Xu C G, Li X H, Xing Y Z. Comparison of quantitative trait loci for 1000-grain weight and spikelets per panicle across three connected rice populations. Euphytica, 2010, 175: 383-394

[1] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[2] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[3] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[4] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[5] Lhundrupnamgyal,Hui-Hui LI,Gang-Gang GUO, Chemiwangmo,Li-Yun GAO,Ya-Wei TANG, Nyematashi, Dawadondrup, Dolkar. Growth habit identification and diversity and stability analysis of heading date in Tibetan barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1796-1805.
[6] Hai-Xin LONG,Hai-Yang QIU,UZAIR Muhammad,Jing-Jing FANG,Jin-Feng ZHAO,Xue-Yong LI. Phenotypic Analysis and Gene Mapping of the Rice Narrow-leaf Mutant nal20 [J]. Acta Agronomica Sinica, 2018, 44(9): 1301-1310.
[7] Ji-Chi DONG,Jing YANG,Tao GUO,Li-Kai CHEN,Zhi-Qiang CHEN,Hui WANG. QTL Mapping for Heading Date in Rice Using High-density Bin Map [J]. Acta Agronomica Sinica, 2018, 44(6): 938-946.
[8] ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602.
[9] SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621.
[10] GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160.
[11] SHE Dong, LIU Qiang-Ming, LI Da-Lu, LIANG Yin-Feng, LIU Er-Bao,DANG Xiao-Jing,HONG De-Lin. QTL Mapping of Seven Panicle Traits in Rice (Oryza sativa L.) Using Chromosome Segment [J]. Acta Agron Sin, 2017, 43(05): 658-668.
[12] BAI Na,LI Yong-Xiang*,JIAO Fu-Chao,CHEN Lin,LI Chun-Hui,ZHANG Deng-Feng,SONG Yan-Chun,WANG Tian-Yu,LI Yu,SHI Yun-Su*. Fine Mapping andGenetic Effect Analysis of qKRN5.04, a Major QTL Associated with Kernel Row Number [J]. Acta Agron Sin, 2017, 43(01): 63-71.
[13] ZHOU Jin-Song,YAN Ping,ZHANG Wei-Ming,ZHENG Fu-Yu,CHENG Xiao-Yi,CHEN Wen-Fu. Effect of Biochar on Root Morphogenesis and Anatomical Structure of Rice Cultivated in Cold Region of Northeast China [J]. Acta Agron Sin, 2017, 43(01): 72-81.
[14] CHEN Qiang,YAN Long,DENG Ying-Ying,Xiao Er-ning,Liu Bing-Qiang,YANG Chun-Yan*,ZHANG Meng-Chen*. Mapping Quantitative Trait Loci for Seed Size and Shape Traits in Soybean [J]. Acta Agron Sin, 2016, 42(09): 1309-1318.
[15] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!