[1]Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–80
[2]Fukayama H, Imanari E, Tsuchida H, Izui K, Matsuoka M. In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell Physiol, 2000, 41: S112
[3]Matsuoka M, Fukayama H, Tsuchida H, Nomura M, Agari S, Ku M S B, Miyao M. How to express some C4 photosynthesis genes at high levels in rice. In: Sheehy J E, Mitchell P L, Hardy B, eds. Redesigning Rice Photosynthesis to Increase Yield. Proceedings of the Workshop on the Quest to Reduce Hunger: Redesigning Rice Photosynthesis, 30 November to 3 December 1999, Los Banos, Philippines. International Rice Research Institute and Amsterdam: Elsevier Science BV, 2000. pp 167–175
[4]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257–265
[5]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227–239
[6]Ding Z S, Huang S H, Zhou B Y, Sun X F, Zhao M. Over-expression of phosphoenolpyruvate carboxylase cDNA from C4 millet (Seteria italica) increase rice photosynthesis and yield under upland condition but not in wetland fields. Plant Biotechnol Rep, 2013, 7: 155–163
[7]O’Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436: 15–34
[8]Setién I, Vega-Mas I,Celestino N, Calleja-Cervantes M E,González-Murua C, Estavillo J M, González-Moro M B. Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato. J Plant Physiol, 2014, 171: 49–63
[9]张桂芳, 赵明, 丁在松, 张丽, 肖俊涛. 稗草磷酸烯醇式丙酮酸羧化酶(PEPCase)基因的克隆与分析. 作物学报, 2005, 31: 1365–1369
Zhang G F, Zhao M, Ding Z S, Zhang L, Xiao J T. Cloning and characterization of phosphoenolpyruvate carboxylase gene from Echinochloa crusgalli. Acta Agron Sin, 2005, 31: 1365–1369 (in Chinese with English abstract)
[10]Kawamura T, Shigesada K, Yanagisawa S, Izui K. Phosphoenolpyruvate carboxylase prevalent in maize roots: Isolation of cDNA clone and its use for analysis of the gene and the gene expression. J Biochem (Tokyo), 1990, 107: 165–168
[11]Kawamura T, Shigesada K, Toh H, Okumura S, Yanagisawa S, Izui K. Molecular evolution of phosphoenolpyruvate carboxylase for C4 photosynthesis in maize: comparison of its cDNA sequence with a newly isolated cDNA encoding an isozyme involved in the anaplerotic function. J Biochem (Tokyo), 1992, 112: 147–154
[12]Hudspeth R L, Grula J W. Structure and expression of the maize gene encoding the phosphoenolpyruvte carboxylse isozyme involved in C4 photosynthesis. Plant Mol Biol, 1989, 12: 579–589
[13]Westhoff P, Svensson P, Ernst K, Blasing O, Bruscheidt J, Stockhaus J, von Caemmerer S, Furvank R T. Molecular evolution of C4 phosphoenolphyruvate carboxylase in the genus Flaveria. Aust J Plant Physiol, 1997, 24: 429–436
[14]Gowik U, Westhoff P. C4-phosphoenolpyruvate carboxylase. In: Raghavendra A S, Sage R F. C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration. Dordrecht: Springer, 2011, 32: 257−275
[15]Guillet C, Just D, Bénard N, Destrac-Irvine A, Baldet P, Hernould M, Causse M, Raymond P, Rothan C. A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta, 2002, 214: 717−726
[16]Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H. Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotech J, 2004, 2: 211−219
[17]张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩. 油菜籽粒发育过程中PEPCase活性与油脂、蛋白及亚基积累的特点. 中国油料作物学报, 2009, 31: 14–18
Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H. The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009, 31: 14–18 (in Chinese with English abstract)
[18]Pan L J, Yang Q L, Chi X Y, Chen M N, Yang Z, Chen N, Wang T, Wang M, He Y N, Yu S L. Functional analysis of the phosphoenolpyruvate carboxylase on the lipid accumulation of peanut (Arachis hypogaea L.) seeds. J Integr Agric, 2013, 12: 36–44
[19]凌丽俐, 林宏辉, 焦德茂. 转PEPC基因水稻种质的稳定光合生理特性. 作物学报, 2006, 32: 527–531
Ling L L, Lin H H, Jiao D M. The stable photosynthetic characteristics of a PEPC transgenic rice germplasm. Acta Agron Sin, 2006, 32: 527–531 (in Chinese with English abstract)
[20]Jiao D M, Huang X Q, Li X. Characteristics of carbon assimilation and tolerance to photooxidation in transgenic rice expressing C4 photosynthesis enzymes. In: PS2001 Proceedings, 12th International Congress on Photosynthesis. Brisbane: CSIRO Publishing, 2001, S33-004, 1–6
[21]焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本. 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报, 2001, 46: 414–418
Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Gu S B. The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Chin Sci Bull, 2001, 46: 414–418
[22]焦德茂, 匡廷云, 李霞, 戈巧英, 黄雪清, 郝乃斌, 白克智. 转PEPC基因水稻具有初级CO2浓缩机制的生理特点. 中国科学, 2003, 33: 33–39
Jiao D M, Kuang T Y, Li X, Ge Q Y, Huang X Q, Hao N W, Bai K Z. Physiological characteristics of the primitive CO2 concentrating mechanism in PEPC transgenic rice. Sci China, 2003, 33: 33–39
[23]Huang X Q, Jiao D M, Chi W, Ku M S B. Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C4 genes. Acta Bot Sin, 2002, 44(4): 405–412
[24]张边江, 华春, 周峰, 周泉澄, 陈全战, 王荣富, 焦德茂. 转PEPC+PPDK双基因水稻的光合特性. 中国农业科学, 2008, 41: 3008–3014 (in Chinese with English abstract)
Zhang B J, Hua C, Zhou F, Zhou Q C, Chen Q Z,Wang R F, Jiao D M. Photosynthetic characteristics of transgenic rice with PEPC+PPDK gene. Sci Agric Sin, 2008, 41: 3008–3014 (in Chinese with English abstract)
[25]Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 2002, 84: 1127–1135
[26]丁在松, 赵明, 荆玉祥, 李良璧, 匡廷云. 玉米ppc基因过表达对转基因水稻光合速率的影响. 作物学报, 2007, 33: 717–722
Ding Z S, Zhao M, Jing Y X, Li L B, Kuang T Y. Effect of overexpression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin, 2007, 33: 717 – 722 (in Chinese with English abstract)
[27]方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34: 1220−1226
Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34: 1220−1226 (in Chinese with English abstract)
[28]周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37: 112–118
Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37: 112–118 (in Chinese with English abstract)
[29]Scheibe R. Malate valves to balance cellular energy supply. Physiol Plant, 2004, 120: 21–26
[30]Andreo C S, Gonzalez D H, Iglesias A A. Higher plant phosphoenolpyruvate carboxylase: Structure and regulation. FEBS Lett, 1987, 213: 1–8 |