Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (03): 507-514.
• RESEARCH NOTES • Previous Articles
ZHANG Gui-Fang1,2,DING Zai-Song1,ZHAO Ming1,*
[1]Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–80[2]Fukayama H, Imanari E, Tsuchida H, Izui K, Matsuoka M. In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell Physiol, 2000, 41: S112 [3]Matsuoka M, Fukayama H, Tsuchida H, Nomura M, Agari S, Ku M S B, Miyao M. How to express some C4 photosynthesis genes at high levels in rice. In: Sheehy J E, Mitchell P L, Hardy B, eds. Redesigning Rice Photosynthesis to Increase Yield. Proceedings of the Workshop on the Quest to Reduce Hunger: Redesigning Rice Photosynthesis, 30 November to 3 December 1999, Los Banos, Philippines. International Rice Research Institute and Amsterdam: Elsevier Science BV, 2000. pp 167–175 [4]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257–265 [5]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227–239 [6]Ding Z S, Huang S H, Zhou B Y, Sun X F, Zhao M. Over-expression of phosphoenolpyruvate carboxylase cDNA from C4 millet (Seteria italica) increase rice photosynthesis and yield under upland condition but not in wetland fields. Plant Biotechnol Rep, 2013, 7: 155–163 [7]O’Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436: 15–34 [8]Setién I, Vega-Mas I,Celestino N, Calleja-Cervantes M E,González-Murua C, Estavillo J M, González-Moro M B. Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato. J Plant Physiol, 2014, 171: 49–63 [9]张桂芳, 赵明, 丁在松, 张丽, 肖俊涛. 稗草磷酸烯醇式丙酮酸羧化酶(PEPCase)基因的克隆与分析. 作物学报, 2005, 31: 1365–1369 Zhang G F, Zhao M, Ding Z S, Zhang L, Xiao J T. Cloning and characterization of phosphoenolpyruvate carboxylase gene from Echinochloa crusgalli. Acta Agron Sin, 2005, 31: 1365–1369 (in Chinese with English abstract) [10]Kawamura T, Shigesada K, Yanagisawa S, Izui K. Phosphoenolpyruvate carboxylase prevalent in maize roots: Isolation of cDNA clone and its use for analysis of the gene and the gene expression. J Biochem (Tokyo), 1990, 107: 165–168 [11]Kawamura T, Shigesada K, Toh H, Okumura S, Yanagisawa S, Izui K. Molecular evolution of phosphoenolpyruvate carboxylase for C4 photosynthesis in maize: comparison of its cDNA sequence with a newly isolated cDNA encoding an isozyme involved in the anaplerotic function. J Biochem (Tokyo), 1992, 112: 147–154 [12]Hudspeth R L, Grula J W. Structure and expression of the maize gene encoding the phosphoenolpyruvte carboxylse isozyme involved in C4 photosynthesis. Plant Mol Biol, 1989, 12: 579–589 [13]Westhoff P, Svensson P, Ernst K, Blasing O, Bruscheidt J, Stockhaus J, von Caemmerer S, Furvank R T. Molecular evolution of C4 phosphoenolphyruvate carboxylase in the genus Flaveria. Aust J Plant Physiol, 1997, 24: 429–436 [14]Gowik U, Westhoff P. C4-phosphoenolpyruvate carboxylase. In: Raghavendra A S, Sage R F. C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration. Dordrecht: Springer, 2011, 32: 257−275 [15]Guillet C, Just D, Bénard N, Destrac-Irvine A, Baldet P, Hernould M, Causse M, Raymond P, Rothan C. A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta, 2002, 214: 717−726 [16]Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H. Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotech J, 2004, 2: 211−219 [17]张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩. 油菜籽粒发育过程中PEPCase活性与油脂、蛋白及亚基积累的特点. 中国油料作物学报, 2009, 31: 14–18 Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H. The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009, 31: 14–18 (in Chinese with English abstract) [18]Pan L J, Yang Q L, Chi X Y, Chen M N, Yang Z, Chen N, Wang T, Wang M, He Y N, Yu S L. Functional analysis of the phosphoenolpyruvate carboxylase on the lipid accumulation of peanut (Arachis hypogaea L.) seeds. J Integr Agric, 2013, 12: 36–44 [19]凌丽俐, 林宏辉, 焦德茂. 转PEPC基因水稻种质的稳定光合生理特性. 作物学报, 2006, 32: 527–531 Ling L L, Lin H H, Jiao D M. The stable photosynthetic characteristics of a PEPC transgenic rice germplasm. Acta Agron Sin, 2006, 32: 527–531 (in Chinese with English abstract) [20]Jiao D M, Huang X Q, Li X. Characteristics of carbon assimilation and tolerance to photooxidation in transgenic rice expressing C4 photosynthesis enzymes. In: PS2001 Proceedings, 12th International Congress on Photosynthesis. Brisbane: CSIRO Publishing, 2001, S33-004, 1–6 [21]焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本. 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报, 2001, 46: 414–418 Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Gu S B. The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Chin Sci Bull, 2001, 46: 414–418 [22]焦德茂, 匡廷云, 李霞, 戈巧英, 黄雪清, 郝乃斌, 白克智. 转PEPC基因水稻具有初级CO2浓缩机制的生理特点. 中国科学, 2003, 33: 33–39 Jiao D M, Kuang T Y, Li X, Ge Q Y, Huang X Q, Hao N W, Bai K Z. Physiological characteristics of the primitive CO2 concentrating mechanism in PEPC transgenic rice. Sci China, 2003, 33: 33–39 [23]Huang X Q, Jiao D M, Chi W, Ku M S B. Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C4 genes. Acta Bot Sin, 2002, 44(4): 405–412 [24]张边江, 华春, 周峰, 周泉澄, 陈全战, 王荣富, 焦德茂. 转PEPC+PPDK双基因水稻的光合特性. 中国农业科学, 2008, 41: 3008–3014 (in Chinese with English abstract) Zhang B J, Hua C, Zhou F, Zhou Q C, Chen Q Z,Wang R F, Jiao D M. Photosynthetic characteristics of transgenic rice with PEPC+PPDK gene. Sci Agric Sin, 2008, 41: 3008–3014 (in Chinese with English abstract) [25]Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 2002, 84: 1127–1135 [26]丁在松, 赵明, 荆玉祥, 李良璧, 匡廷云. 玉米ppc基因过表达对转基因水稻光合速率的影响. 作物学报, 2007, 33: 717–722Ding Z S, Zhao M, Jing Y X, Li L B, Kuang T Y. Effect of overexpression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin, 2007, 33: 717 – 722 (in Chinese with English abstract)[27]方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34: 1220−1226Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34: 1220−1226 (in Chinese with English abstract)[28]周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37: 112–118Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37: 112–118 (in Chinese with English abstract)[29]Scheibe R. Malate valves to balance cellular energy supply. Physiol Plant, 2004, 120: 21–26[30]Andreo C S, Gonzalez D H, Iglesias A A. Higher plant phosphoenolpyruvate carboxylase: Structure and regulation. FEBS Lett, 1987, 213: 1–8 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|