Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (07): 1026-1036.doi: 10.3724/SP.J.1006.2016.01026

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Alternate Wetting and Drying Irrigation on Yield and Water Use Efficiency of Rice

CHU Guang,ZHAN Ming-Fei,ZHU Kuan-Yu,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
  • Received:2015-12-29 Revised:2016-05-09 Online:2016-07-12 Published:2016-05-12
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317 E-mail:chuguang19880210@163.com
  • Supported by:

    The research was supported by the National Natural Science Foundation of China (31461143015, 31271641, 31471438), Jiangsu “Three-innovation” Agricultural Project (SXG2014313), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Innovation Research Program for Graduate Students for Higher Education of Jiangsu Province (KYZZ_0364), and the Top Talent Supporting Program of Yangzhou University (2015-01).

Abstract:

Alternate wetting and drying (AWD) irrigation has been widely adopted to replace conventional irrigation (CI) for saving water and increasing water use efficiency (WUE) in irrigated rice systems in China. However, there is limited information about how AWD affects yield, WUE, and root and shoot growth and development. To fill this knowledge gap, we conducted the experiment using three local high-yielding rice cultivars, Wuyunjing 24 (japonica), Yangliangyou 6 (two-line indica hybrid rice) and Yongyou 2640 (three-line indica/japonica hybrid rice) under the two water managements, CI and AWD, during the whole growing season. The results showed that, when compared with CI, AWD increased grain yield by 5.34%, 5.85%, and 6.62% and WUE by 28.9%, 25.3%, and 27.6%, respectively which mainly attributed to greater root oxidation activity, amount of root bleeding sap, content of cytokinins (zeatin + zeatin riboside) in roots and leaves, highten photosynthetic rate of flag leaf, deeper root distribution, increased productive tillers and leaf area, and enhanced activities of enzymes involved in sucrose-to-starch conversion in grains during grain filling. The results demonstrate that AWD is an effective practice to increase grain yield and water use efficiency through enhancing root and shoot growth and development.

Key words: Rice, Yield, Root, Water use efficiency, Alternate wetting and drying

[1]Bouman B, Tuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manage, 2001, 49: 11–30
[2]Belder P, Bouman B, Cabangon R, Guoan L, Quilang E, Li Y, Spiertz J, Tuong T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 2004, 65: 193–210
[3]Bouman B. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric Syst, 2007, 93: 43–60
[4]Devkota K, Hoogenboom G, Boote K, Singh U, Lamers J, Devkota M, Vlek P. Simulating the impact of water saving irrigation and conservation agriculture practices for rice–wheat systems in the irrigated semi-arid drylands of central Asia. Agric For Meteorol, 2015, 214: 266–280
[5]Ockerby S, Fuka S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res, 2001, 69: 215–226
[6]Shao G, Deng S, Liu N, Yu S, Wang M, She D. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Eur J Agron, 2015, 53: 1–9
[7]Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Res, 2006, 95: 1–12
[8]Lampayan R, Rejesus R, Singleton G, Bouman B. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res, 2015, 170: 95–108
[9]Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res, 2013, 144: 212–224
[10]Arjun P, Van T, Duong Q, Thi P, Thi L, Lars S, Andreas N. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric Ecosyst Environ, 2014, 196: 137–146
[11]Liu L, Chen T, Wang Z, Zhang H, Yang J, Zhang J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res, 2013, 154: 226–235
[12]Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009, 49: 2246–2260
[13]Yang J, Zhang J. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177–3189
[14]Tabbal D, Bouman B, Bhuiyan S, Sibayan E, Sattar M. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines. Agric Water Manag, 2002, 56: 93–112
[15]杨建昌.水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36−46
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36−46 (in Chinese with English abstract)
[16]陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系. 作物学报, 2013, 39: 1899–1908
Chen D G, Zhou X Q, Li L J, Liu C G, Zhang X, Chen Y D. Relationship between root morphological characteristics and yield components of major commercial indica rice in south China. Acta Agron Sin, 2013, 39: 1899–1908 (in Chinese with English abstract)
[17]褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系. 作物学报, 2014, 40: 850–858
Chu G, Liu J, Zhang H, Yang J C. Morphology and physiology of roots and their relationships with yield formation in super rice. Acta Agron Sin, 2014, 40: 850–858 (in Chinese with English abstract)
[18]李洪亮, 孙玉友, 曲金玲, 魏才强, 孙国宏, 赵云彤, 柴永山. 施氮量对东北粳稻根系形态生理特征的影响. 中国水稻科学, 2012, 26: 723–730
Li H L, Sun Y Y, Qu J L, Wei C Q, Sun G H, Zhao Y T, Chai Y S. Influence of nitrogen levels on morphological and physiological characteristics of root system in japonica rice in northeast China. Chin J Rice Sci, 2012, 26: 723–730 (in Chinese with English abstract)
[19]李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208–2220
Li J, Zhang H C, Chang Y, Gong J L, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 2208−2220 (in Chinese with English abstract)
[20]褚光, 周群, 薛亚光, 颜晓元, 刘立军, 杨建昌. 栽培模式对杂交粳稻常优5号根系形态生理性状和地上部生长的影响.作物学报, 2014, 40: 949−955
Chu G, Zhou Q, Xue Y G, Yan X Y, Liu L J, Yang J C. Effects of cultivation patterns on root morph-physiological traits and aboveground development of japonica hybrid rice cultivar Changyou 5. Acta Agron Sin, 2014, 40: 949−955 (in Chinese with English abstract)
[21]Zhang H, Li H, Wang Z , Yang J , Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63: 215–227
[22]陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学, 2015, 48: 1288-1299
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains. Sci Agric Sin, 2015, 48: 1288-1299 (in Chinese with English abstract)
[23]付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40: 1056−1065
Fu J, Liu J, Cao Z Q, Wang Z Q, Zhang H, Yang J C. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars. Acta Agron Sin, 2014, 40: 1056−1065 (in Chinese with English abstract)
[24]杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29: 58–66
Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29: 58–66 (in Chinese with English abstract)
[25]陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23: 498−500
Chen Y P, Yang W Y. Determination of GA3, IAA, ABA and ZT in dormant buds of allium ovalif olium by HPLC. J Sichuan Agric Univ, 2005, 23: 498−500 (in Chinese with English abstract)
[26]Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69−81
[27]Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621−1629
[28]Ramasamy S, Berge H, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res, 1997, 51: 65–82
[29]Chu G, Chen T, Wang Z, Yang, J, Zhang J. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108−119
[30]Li H, Liu L, Wang Z, Yang J, Zhang J. Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crops Res, 2012, 133: 119−129
[31]Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, Wu W, Chen M, Peng S. Agronomic performance of high-yielding rice variety grown under alternate wetting an drying irrigation. Field Crops Res, 2012, 126: 16−22
[32]Chu G, Wang Z, Zhang H, Liu L, Yang J, Zhang J. Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation. Food & Energy Security, 2015, 4: 238−254
[33]Ju C, Buresh R, Wang Z, Zhang H, Liu L, Yang J, Zhang J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47–55
[34]郑华斌, 姚林, 刘建霞, 贺慧, 陈阳, 黄璜. 种植方式对水稻产量及根系性状的影响. 作物学报, 2014, 40: 667−677
Zheng H B, Yao L, Liu J X, He H, Chen Y, Huang H. Effect of ridge and terraced cultivation on rice yield and root trait. Acta Agron Sin, 2014, 40: 667−677 (in Chinese with English abstract) 
[35]Chu G, Wang Z, Zhang H, Yang J, Zhang J. Agronomic and physiological performance of rice under integrative crop management. Agron J, 2016, 108: 1–12
[36]戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45: 4770−4781
Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Sci Agric Sin, 2012, 45: 4770−4781 (in Chinese with English abstract)
[37]Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315−323
[38]Nakamura Y, Yuki K, Park S. Carbohyrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833−839
[39]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 15−20
[40]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827−831

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[6] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[7] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[8] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[9] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[10] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[11] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[12] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[13] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[14] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[15] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!