[1] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701–702
[2] Khush G. Green revolution: Preparing for the 21st century. Genome, 1999, 42: 646–655
[3] Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402–16409
[4] 牛静, 陈赛华, 赵婕妤, 曾召琼, 蔡茂红, 周亮, 刘喜, 江玲, 万建民. 水稻株型突变体rad-1和rad-2的鉴定与功能基因克隆. 作物学报, 2015, 41: 1621–1631
Niu J, Chen S H, Zhao J Y, Zeng Z Q, Cai M H, Zhou L, Liu X, Jiang L, Wan J M. Identification and map- based cloning of rad-1 and rad-2, two rice architecture determinant mutants. Acta Agron Sin, 2015, 41: 1621–1631 (in Chinese with English abstract)
[5] 胡运高, 杨国涛, 郭连安, 钦鹏, 陈水军, 李世贵. 水稻多蘖突变体bf370的遗传分析和基因定位. 中国水稻科学, 2015, 29: 357–362
Hu Y G, Yang G T, Guo L A, Qin P, Chen Y J, Li S G. Genetic analysis and mapping of a dwarf and high-tillering mutant bf370 in rice. Chin J Rice Sci, 2015, 29: 357–362 (in Chinese with English abstract)
[6] Nagano H, Onishi K, Ogasawara M, Horiuchi Y, Sano Y. Genealogy of the “Green Revolution” gene in rice. Genes Genet Syst, 2005, 80: 1–6
[7] 罗茂春, 赵政, 夏令, 郭迟鸣, 陈亮. 水稻矮秆基因d-ss的遗传分析与克隆. 厦门大学学报(自然科学版), 2013, 52: 684–689
Luo M C, Zhao Z, Xia L, Guo C M, Chen L. Rice dwarfing genes and genetic analysis and cloning of d-ss. J Xiamen Univ (Nat Sci), 2013, 52: 684–689 (in Chinese with English abstract)
[8] Chang T. Genetics and breeding. In: Westport. Rice: Production and Utilization. Connecticut: AVI Press, 1980. pp 146–187
[9] Kimijima O, Tanisaka T, Kinoshita T. Gene symbols for dwarfness. Rice Genet Newsl, 1995, 13: 19–24
[10] Chen H, Zhou C, Xing Y. A new rice dwarf1 mutant caused by a frame-shift mutation. Hereditas, 2011, 33(4): 397–403
[11] Peng J, Richards D, Hartley N, Murphy G, Devos K, Flintham J, Beales J, Fish L, Worland A, Pelica F, Sudhakar D, Christou P, Snape J, Gale M, Harberd N.“Green revolution” genes encode mutant gibberellins response modulators. Nature, 1999, 400: 256–261
[12] Yuan L. Super hybrid rice. Chin Rice Res Newsl, 2000, 8: 13–15
[13] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048
[14] Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3β- hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909–8914
[15] Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Lwahori S, Matsouka M, Tanaka H. Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol, 2003, 1: 909–913
[16] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semi-dwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17
[17] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54: 533–547
[18] Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander L N, Kamiya Y, Yamaguchi S, He Z. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006, 18: 442–456[
19] Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698
[20] Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626–634
[21] Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J, 2012, 71: 443–453
[22] Shimada A, Ueguchi-Tanaka M, Sakamoto T. The rice spindly gene functions as a negative regulator of gibberellins signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J, 2006, 48: 390–402
[23] Tomonobu T, Takuma K, Yuko H, Masami U, Shiho A, Kazunori O, Jinichiro K, Wataru M, Hisakazu Y. Cloning and characterization of cDNAs encoding ent-copaly diphosphate synthases in wheat: insight into the evolution of rice phytoalexin biosynthetic genes. Biosci Biotechnol Biochem, 2009, 73: 772–775
[24] Mallikarjuna R K, Zhang Y S, Yu S B, Yan W H, Xing Y Z. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to green revolution gene sd1. Theor Appl Genet, 2011, 123: 705–714
[25] Liu Y J, Xu Y Y, Xiao J, Ma Q B, Li D, Xue Z, Chong K. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol, 2011, 168: 1098–1105
[26] Huang J, Tang D, Shen Y, Qin B X, Hong L L, You A Q, Li M, Wang X, Yu H X, Gu M H, Cheng Z K. Activation of gibberellins 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics, 2010, 37: 23–26
[27] Marcia M, Zhou X, Zhu Q, Dennis E, Upadhyaya N. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep, 2005, 23: 819–833
[28] Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11638–11643
[29] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900–2910
[30] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu, encode the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol biol, 2004, 54: 533–547
[31] Nakagawa H, Atsunori T, Takanari T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Masaki M. Short grain1 decrease organ elongation and brassinosteroid response in rice. Plant Physiol, 2012, 158: 1208–1219
[32] Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y H, Qian Q, Zhu L H, Chu C C. Dwarf and low-tillering, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009, 58: 803–816
[33] Bai M, Zhang L, Srinivas S G, Zhu S W, Song W Y, Chong K, Wang Z. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104: 13839–3844
[34] Hu X, Qian Q, Xu T, Zhang E, Dong G J, Gao T, Qi X, Xue Y B. The U-box E3 ubiquitin ligase TUD1 funcations with a heterotrimeric Gα-subunit to brassinosteroid-mediated growth in rice. PLos Genet, 2013, 9(3): e1003391
[35] Sui P F, Jin J, Ye S, Mu C, Gao J, Feng H Y, Shen W H, Yu Y, Dong A W. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J, 2012, 70: 340–347
[36] Jiang Y H, Bao L, So-Yoon J, Seong-Ki K, Xu C G, Li X H, Zhang Q F. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J, 2012, 70: 398–408
[37] Yang G, Nakamura H, Ichikawa H, Kitano H, Komatsu S. OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice. Phytochemistry, 2006, 67: 1442–1454
[38] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776–790
[39] Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50:1416 –1424
[40] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591–1606
[41] Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013, 73: 676–688
[42] Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019–1029
[43] Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–698
[44] Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512–1525
[45] Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C, Ma Y, Zhang Q R, Meng Z, Chong K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4: 1566
[46] Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410
[47] Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H, Fujisawa Y, Kato H, Iwasaki Y. Function of the α subunit of rice heterotrimeric G protein in Brassinosteroid signaling. Plant Cell Physiol, 2009, 50: 161–172
[48] Ashikari M, Wu JZ, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284–10289
[49] Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA, 1999, 96: 7575–7580
[50] Assmann S M. G Protein regulation of disease resistance during infection of rice with rice blast fungus. Sci STKE, 2005, 310: 13
[51] Jones A M, Assmann S M. Plants: the latest model system for G-protein research. EMBO Rep, 2004, 5: 572–578
[52] Assmann S M. G Proteins go green: A plant G protein signaling FAQ sheet. Science, 2005, 310: 71–73
[53] Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K. The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA, 2002, 99: 13307–13312
[54] Lieberherr D, Thao N, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol, 2005, 138: 1644–1652
[55] Iwasaki Y, Fujisawa Y, Kato H. Function of heterotrimeric G protein in gibberellin signaling. Plant Growth Regul, 2003, 22: 126–133
[56] Ling Z, Mew T, Wang J, Lei C, Hang N. Development of Chinese near-isogenic lines of rice and their differentiating ability of pathogenic races of blast fungus. Chin Agric Sci, 2001, 1: 50–56
[57] Kobayashi N, Telebanco-Yanoria M J, Tsunematsu H, Kato H, Imbe T, Fukuta Y. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jpn Agric Res Q, 2007, 41: 31–37
[58] Oki K, Inaba N, Kitagawa K, Kitano H, Takahashi S, Fujisawa Y, Kato H, Iwasaki Y. Study of novel d1 alleles, defective mutants of the α subunit of heterotrimeric G-protein in rice. Genes Genet Syst, 2009, 84: 35–42
[59] 纪现军, 叶胜海, 周涯, 修芬连, 邓晓梅, 尚海漩, 刘继云, 陈萍萍, 李小华, 金庆生, 张小明. 水稻矮秆突变体Zj88d的鉴定与基因定位. 中国水稻科学, 2013, 27: 35–40
Ji X J, Ye S H, Zhou Y, Xiu F L, Deng X M, Shang H X, Liu J Y, Chen P P Li X H, Jin Q S, Zhang X M. Characterization and gene mapping of a dwarf mutant Zj88d in rice. Chin J Rice Sci, 2013, 27: 35–40 (in Chinese with English abstract)
[60] 侯雷, 袁守江, 尹亮, 赵金凤, 万国峰, 张文会, 李学勇. 两个新水稻Dwarf18基因强等位突变体的表型分析及分子鉴定. 作物学报, 2013, 38: 1416–1424
Hou L, Yuan S J, Yin L, Zhao J F, Wan G F, Zhang W H, Li X Y. Phenotypic analysis and molecular characterization of two allelic mutants of the dwarf18 gene in rice. Acta Agron Sin, 2013, 38: 1416–1424 (in Chinese with English abstract)
[61] 马良勇, 包劲松, 李西明, 朱旭东, 季芝娟, 夏英武, 杨长登. 水稻矮生基因的克隆和功能研究进展. 中国水稻科学, 2009, 23: 1–11
Ma L Y, Bao J S, Li X M, Zhu X D, Ji Z J, Xia Y W, Yang C D. Progress on cloning and functional analysis of dwarfism related genes in rice. Chin J Rice Sci, 2009, 23: 1–11 (in Chinese with English abstract) |