Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 144-156.doi: 10.3724/SP.J.1006.2018.00144

• RESEARCH NOTES • Previous Articles    

Pedigree Construction and SSR Analysis of Broomcorn Millet Mutant by 12C6+ Ion Beam Irradiation

LIU Tian-Peng1,DONG Kong-Jun1,DONG Xi-Cun2,HE Ji-Hong1,LIU Min-Xuan3,REN Rui-Yu1,ZHANG Lei1,YANG Tian-Yu1,4,   

  1. 1 Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 3 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4 Life Sciences and Technology College, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2017-03-24 Revised:2017-09-10 Online:2018-01-12 Published:2017-09-28
  • Supported by:

    The work was supported by the Gansu Academy of Agricultural Sciences Funds for Youth and the China Agriculture Research System (CARS-07-12.5-A5).

Abstract:

To construct mutant library of physical mutation in broomcorn millet, applied five doses of 12C6+ ion beam at 50, 100, 150, 200, and 250 Gy to irradiate seed of Longmi 7 and Jinshu 9, and constructed two populations (M5) consisting of 52 and 79 lines respectively with mixed pedigree method and system cluster. The field text showed that the emergence rate of M1 decreased significantly with increasing 12C6+ dose, half lethal dose for M1 from Longmi 7 and Jinshu 9 were 150 Gy and 100 Gy. M4 at 100, 150 Gy produce a most abundant mutants. M5 and M6 Phenotypes were more stable than M4, and plant height, yield traits, plant color and seed color showed significant difference. Nine M6 lines from Longmi 7 and 11 M6 lines from Jinshu 9 were detected with six pairs of SSR primer, compared with the parents, loci variant genotype number were 1-2 and 1-4, respectively, showing abundant genetic diversity in mutant populations.

Key words: 12C6+ ion, Physical irradiation, Mutant populations, Molecular marker

[1] Naito K, Kusaba M, Shikazono N, Takano T, Tanaka A, Tanisaka T, Nishimura M. Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with γ-rays and carbon ions. Genetics, 2005, 169: 881–889 [2] Sallaud C, Gay C, Larmande P,Bès M, Piffanelli P, Piégu B, Droc G, Regad F, Bourgeois E, Meynard D, Périn C, Sabau X, Ghesquière A, Glaszmann JC, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice: a firststep towards in silico reverse genetics. Plant J, 2004, 39: 450–464 [3] Parry M A J, Madgwick P J, Bayon C, Tearall K, Lopez A H, Baudo M, Yassin A A, Ouabbou H, Hamada W, Labhilili M, Phillips A. Mutation discovery for crop improvement. J Exp Bot, 2009, 60: 2817–2825 [4] 杨震, 彭选明, 彭伟正. 作物诱变育种研究进展. 激光生物学报, 2016, 25: 302–307 Yang Z, Peng X M, Peng W Z. Progress of Study on Crop Mutation Breeding. Acta Laser Biol Sin, 2016, 25: 302–307 (in Chinese with English abstract) [5] 杜艳. 碳离子束辐照拟南芥突变体筛选及诱变效应研究. 中国科学院大学博士学位论文, 甘肃兰州, 2015 Du Y. Mutation Screening and Mutagenic Effects Research of Carbon-Ion Irradiation on Arabidopsis thaliana. PhD Dissertation of University of Chinese Academy of Sciences, Lanzhou, China, 2015 (in Chinese with English abstract) [6] 阎侃, 李雪虎. 碳离子辐照对菘蓝药性品质和分子水平的诱变效应. 西北植物学报, 2015, 35: 906–914 Yan K, Li X H. Impact of carbon irradiation on potency and molecular level variation of Isatis indigotica. Acta Bot Boreal-Occident Sin, 2015, 35: 906–914 (in Chinese with English abstract) [7] 林园园, 陈慧茹, 刘斌美, 叶亚峰, 刘瓒, 吴跃进. 12C6+离子束诱变水稻籽粒Cd低积累突变体的研究. 原子核物理评论, 2016, 33: 488–493 Lin Y Y, Chen H R, Liu B M, Ye Y F, Wu Y J. Study on low-cadmium rice mutants induced by 12C6+ ion beam. Nucl Phys Rev, 2016, 33: 488–493 (in Chinese with English abstract) [8] 余丽霞, 李文建, 杜艳, 刘瑞媛, 周利斌, 骆善伟, 陈刚, 刘青芳. 碳离子束辐照大豆当代诱变效应及褐皮突变体的初步研究. 辐射研究与辐射工艺学报, 2014, 32(2): 1–7 Yu L X, Li W J, Du Y, Liu R Y, Zhou L B, Luo S W, Chen G, Liu Q F. Preliminary study on current mutagenic effects and brown seed mutant of soybean induced by carbon ion irradiation. J Radiat Res Radiat Proc, 2014, 32(2): 1–7 [9] Lágler R, Gyulai G, Humphreys M, Szabó Z, Horváth L, Bittsánszky A, Kiss J, Holly L, Heszky L. Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica, 2005, 146: 77–85 [10] 董孔军, 刘天鹏, 何继红, 任瑞玉, 张磊, 杨天育. 糜子育成品种苗期抗旱性评价与鉴定指标筛选. 植物遗传资源报, 2015, 16: 968–975 Dong K J, Liu T P, He J H, Ren R Y, Zhang L, Yang T Y. Evaluation and indices selection on the drought resistance of broomcorn millet elite cultivars at seeding stage. J Plant Genet Resour, 2015, 16: 968–975 (in Chinese with English abstract) [11] 王星玉, 王纶, 崔彩霞. 黍稷种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. Pp 17–18. Wang X Y, Wang L, Cui C X. Descriptors and Data Standard for Broomcorn millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2006. pp 17–18 (in Chinese) [12] Hu X Y, Wang J F, Lu P, Zhang H S. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J Genet Genomics, 2009, 36: 491–500 [13] 董俊丽, 王海岗, 陈凌, 王君杰, 曹晓宁, 王纶, 乔治军. 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015, 48: 3121–3131 Dong J L, Wang H G, Chen L, Wang J J, Cao X Y, Wang L, Qiao Z J. Analysis of Genetic Diversity and Structure of Proso Millet Core Germplasm. Sci Agric Sin, 2015, 48: 3121–3131 (in Chinese with English abstract) [14] 王银月, 刘敏轩, 陆平, 乔治军, 杨天育, 李海, 崔喜艳. 构建黍稷分子遗传图谱SSR引物的筛选. 作物杂志, 2014, (4): 32–38 Wang Y Y, Liu M X, Lu P, Qiao Z J, Yang T Y, Li Hai,Cui X Y. The SSR Marker Selection of Broomcorn Millet (Panicum miliaceum L.) for Construction of Genetic Linkage Map. Crops, 2014, (4): 32–38 (in Chinese with English abstract) [15] 王银月. 黍稷种质遗传资源多样性及遗传图谱构建研究. 吉林农业大学硕士学位论文, 吉林长春, 2015 Wang Y Y. Assessment of genetic diversity and construction of genetic linkage map of Broomcorn millet (Panicum miliaceum L.). MS Thesis of Jilin Agricultural University, Jilin, China, 2015 (in Chinese with English abstract) [16] Tang S Y, Teng Z H, Zhai T F, Fang X M, Liu F, Liu D J, Zhang J, Liu D X, Wang S F, Zhang K, Shao Q S, Tan Z Y, Paterson A H, Zhang Z S. Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica, 2015, 201: 195–213 [17] Tan Z Y, Fang X M, Tang S Y, Zhang J, Liu D J, Teng Z H, Li L, Ni H J, Zheng F M, Liu D X, Zhang T F, Paterson A H, Zhang Z S. Genetic map and QTL controlling fiber quality traits in upland cotton(Gossypium hirsutum L.). Euphytica, 2015, 203: 615–628 [18] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sata M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “Green Revolution Gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17 [19] Fang X M, Dong K J, Wang X Q, Liu T P, He J H, Ren R Y, Zhang L, Liu R, Liu X Y, Li M, Huang M Z, Zhang Z S, Yang T Y.A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2016, 17(336): 1–12 [20] Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H M, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Henonin L A, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301: 653–657 [21] Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke J D, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff S A. A high throughput Arabidopsis reverse genetics system. Plant Cell, 2002, 14: 2985–2994 [22] Greco R, Ouwerkerk P B, Sallaud C, Kohli A, Colombo L, Puigdomenech P, Guiderdoni E, Christou P, Hoge J H C, Pereira A. Transposon insertional mutagenesis in rice. Plant Physiol, 2001, 125(3): 1175–117 [23] Yi B, Chen Y L, Lei S L, Tu J X, Fu T D. Fine mapping of the recessive genie male-sterile gene (Bnms1) in Brassica napus. Theor Appl Genet, 2006, 113(4), 643–650 [24] 朱环环, 刘艳霞, 潘倩文, 郑凯伦, 林冬枝, 董彦君. 一个水稻白化致死突变体abl25鉴定及其基因定位. 上海师范大学学报(自然科学版), 2014, 43(3): 238–244 Zhu H H, Liu Y X, Pan Q W, Zheng K L, Lin D Z, Dong Y J. Identification and gene mapping of novel rice albino lethal abl25 mutant. J Shanghai Norm Univ (Natl Sci Edn), 2014, 43(3): 238–244 (in Chinese with English abstract) [25] 叶俊, 吴建国, 杜婧, 郑希, 张志, 石春海. 水稻 “9311” 突变体筛选和突变体库构建. 作物学报, 2006, 32: 1525–1529 Ye J, Wu J G, Du J, Zheng X, Zhang Z, Shi C H. The screening of mutants and construction of mutant population for cultivar “9311” in rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 1525–1529 (in Chinese with English abstract) [26] 夏群芳, 周树敏, 王伟倩, 李瑞沙, 张红莉, 张卫. 拟南芥bso-1突变体的基因定位及表型分析. 西北植物学报, 2016, 36: 641–647 Xia Q F, Zhou S M, Wang W Q, Li R S, Zhang H L, Zhang W. Gene mapping and phenotype analyses of an Arabidopsis mutant big size organ 1. Acta Bot. Boreal-Occident Sin, 2016, 36: 641–647 (in Chinese with English abstract) [27] 朱小燕, 徐芳芳, 桑贤春, 蒋钰东, 代高猛, 王楠, 张长伟, 何光华. 水稻叶脉白化突变体wpsm的遗传分析与基因定位. 作物学报, 2013, 39: 1409–1415 Zhu X Y, Xu F F, Sang X C, Jiang Y D, Dai G M, Wang N, Zhang C W, He G L. Genetic analysis and gene mapping of a rice white midrib mutant wpsm. Acta Agron Sin, 2013, 39: 1409?1415 (in Chinese with English abstract) [28] 陈洋, 高兰英, 邵艳军, 张增艳. EMS诱导小麦易位系YW642突变体的鉴定与分子标记分析. 核农学报, 2011, 25: 617–621 Chen Y, Gao L Y, Shao Y J, Zhang Z Y. Phenotypic identification and molecular analysis of a heat line mutant YW642 induced by EMS. J Nucl Agric Sci, 2011, 25: 617–621 (in Chinese with English abstract) [29] 余丽霞, 李文建, 董喜存, 周利斌, 马爽. 碳离子辐射大丽花矮化突变体的RAPD分析. 核技术, 2008, 31: 830–833 Yu L X, Li W J, Dong X C, Zhou L B, Ma S. RAPD analysis on dwarf mutant of Dahlia pinnata Cav. induced by 80 MeV/u 12C6+ ions. Nuclear Techniques, 2008, 31: 830–833 (in Chinese with English abstract)

[1] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[2] YANG Xiao-Ming, CHENG Xu-Zhen, ZHU Zhen-Dong, LIU Chang-Yan, CHEN Xin. Advances in germplasm innovation and genetic improvement of food legumes resistant to bruchid [J]. Acta Agronomica Sinica, 2023, 49(5): 1153-1169.
[3] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[4] DING Min, DUAN Zheng-Yong, WANG Yu-Zhuo, XUE Ya-Peng, WANG Hai-Gang, CHEN Ling, WANG Rui-Yun, QIAO Zhi-Jun. Development and validation of functional markers of GBSSI gene in proso millet [J]. Acta Agronomica Sinica, 2023, 49(3): 703-718.
[5] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[6] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[7] XU Yunbi, WANG Bing-Bing, ZAHNG Jian, ZHANG Jia-Nan, LI Jian-Sheng. Enhancement of plant variety protection and regulation using molecular marker technology [J]. Acta Agronomica Sinica, 2022, 48(8): 1853-1870.
[8] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[9] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[10] YU Xin-Lian, LI Xin, YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun. Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2463-2474.
[11] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[12] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[13] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[14] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[15] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!