Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 938-946.doi: 10.3724/SP.J.1006.2018.00938

• RESEARCH NOTES • Previous Articles    

QTL Mapping for Heading Date in Rice Using High-density Bin Map

Ji-Chi DONG,Jing YANG,Tao GUO,Li-Kai CHEN,Zhi-Qiang CHEN(),Hui WANG()   

  1. National Engineering Research Centre of Plant Space Breeding / South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2017-12-14 Accepted:2018-03-25 Online:2018-06-12 Published:2018-04-16
  • Contact: Zhi-Qiang CHEN,Hui WANG E-mail:chenlin@scau.edu.cn;wanghui@scau.edu.cn
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-01-12);the National Key Research and Development Program of China(2016YFD0102102);the Research and Development Program for Application in Guangdong Province(2015B020231011)

Abstract:

A recombination inbred lines (RIL) population including 192 lines derived from an inter-subspecific cross between indica rice ‘Yuzhenxiang’ and japonica rice ‘02428’ was used in the experiment. The two parent varieties and RIL population were separately sequenced by Whole Genome Sequencing (WGS) and Genotyping-By-Sequencing (GBS) to construct a genetic linkage map with 2711 recombination Bin markers. The number of markers on 12 chromosomes ranged from 162 to 311, and the average physical distance between two markers was 137.68 kb. The WinQTL Cartographer 2.5 was used to analysis QTLs associated with heading date in four different environments. A total of 14 QTLs associated with heading date were detected on chromosomes 1, 2, 3, 7, 8, 9, and 10. Among them, qHD2.2 and qHD10.2, which explained 5.14%-11.15% and 5.35%-16.97% of the total phenotypic variation for heading date separately, could be detected in three environments and shorting heading date about 1.66 days and 1.56 days on average. The two QTLs could inherit stablely, having a good potential to be applied in QTL pyramiding. After comparing the physical positions of these QTLs with those previously reported, we found 11 QTLs were located in the same or near position, among them qHD1.1, qHD2.2, and qHD9.1 were newly reported. Furthermore, we found one cloned gene LOC_Os02g46450 and two annotated genes LOC_Os02g46710 and LOC_Os02g46940 in the genomic region of qHD2.2, might be related to heading date. DNA sequence comparison between YZX and 02428 revealed that all the three genes could be candidate genes.

Key words: rice, heading date, Bin map, QTL mapping

Fig. 1

Distribution of genetic markers and QTLs on chromosomes Black lines represent the positions of Bin markers on each linkage group; fonts in red are cloned QTLs; fonts in blue are novel QTLs."

Table 1

Comparison of heading date between 02428 and YZX"

环境
Environment
平均值Average (d) 变异系数CV (%) 差异
Difference
02428 玉针香 Yuzhenxiang 02428 玉针香 Yuzhenxiang
E1 91.36 97.00 1.08 1.57 -5.64**
E2 64.11 69.27 3.25 3.60 -5.16**
E3 89.20 97.03 0.84 0.76 -7.83**
E4 65.00 70.33 3.91 3.75 -5.33**

Table 2

Phenotypic performance of RILs for heading date"

环境
Environment
平均值±标准差
Mean ± SD
变异范围
Range
峰度
Kurtosis
偏度
Skewness
E1 95.64±6.25 81.33-117.83 0.44 0.60
E2 69.15±4.92 53.13-85.40 0.30 0.27
E3 95.29±4.99 81.00-110.30 0.43 0.11
E4 70.54±4.15 61.30-87.50 0.48 0.46

Fig. 2

Distribution of heading date for YZX/02428 RIL population and parents"

Table 3

QTLs detected for heading date in four environments"

环境
Environ- ment
QTL 染色体
Chr.
位置
Peak position (cM)
LOD 加性效应1)
Additive effect1)
贡献率
Variation
explained (%)
Bin标记区间
Bin marker
interval
置信区间
Confidence interval
(Mb)
E1 qHD2.2 2 178.2 3.0 -1.5 5.1 mk487-491 28.25-28.65
E1 qHD3.1 3 194.2 2.9 -1.4 4.7 mk813-814 30.55-30.65
E1 qHD3.2 3 205.1 3.2 -1.5 5.2 mk826-831 31.85-32.45
E1 qHD3.3 3 211.2 3.2 -1.5 5.3 mk836-840 33.10-33.55
E1 qHD7.1 7 48.8 4.2 1.7 7.0 mk1618-1620 8.65-8.85
E1 qHD8.1 8 42.4 5.6 2.0 9.5 mk1821-1824 4.20-4.55
E1 qHD8.2 8 49.3 4.3 1.7 7.4 mk1825-1830 4.65-5.15
E1 qHD10.1 10 56.7 3.5 -1.6 6.7 mk2244-2247 16.35-16.65
E1 qHD10.2 10 64.8 3.2 -1.5 5.4 mk2248-2253 16.75-17.25
E2 qHD2.1 2 173.6 3.2 -1.3 5.8 mk481-488 27.60-28.35
E2 qHD2.2 2 179.7 5.0 -1.6 9.5 mk489-491 28.45-28.65
E2 qHD7.2 7 118.4 3.0 -1.2 5.2 mk1723-1727 22.05-22.55
E2 qHD10.2 10 62.1 4.5 -1.4 8.2 mk2248-2253 16.75-17.25
E2 qHD10.3 10 67.4 4.1 -1.4 7.5 mk2258-2260 17.75-17.95
E3 qHD1.1 1 160.1 2.5 -1.3 4.4 mk185-186 25.95-26.05
E3 qHD2.2 2 175.2 5.9 -1.9 11.1 mk486-491 28.15-28.65
E3 qHD8.1 8 42.4 3.9 2.4 7.4 mk1821-1824 4.20-4.55
E4 qHD3.1 3 197.3 3.4 -1.0 5.6 mk812-818 30.45-31.05
E4 qHD3.2 3 205.1 3.0 -1.0 4.9 mk826-831 31.85-32.45
E4 qHD9.1 9 125.4 2.8 -1.0 4.6 mk2088-2090 16.55-16.75
E4 qHD10.2 10 63.5 9.6 -1.7 17.0 mk2249-2250 16.85-16.95
E4 qHD10.3 10 70.0 7.1 -1.5 13.5 mk2259-2260 17.85-17.95

Fig. 3

Gene structure and variation of candidate genes between YZX and 02428 A: LOC_Os02g46450; B: LOC_Os02g46710; C: LOC_Os02g46940. Frames with black lines: exon; Grey boxes: protein coding sequence; Red arrow: SNP; Red arrow with a black point: missense mutation; Blue arrow: InDel."

Table 4

Annotated genes in confidence interval of QTLs"

QTL 染色体
Chromosome
置信区间
Confidence interval (Mb)
抽穗期相关注释(克隆)基因1)
Annotated (cloned) gene1)
qHD1.1 1 25.95-26.05 LOC_Os01g45760
qHD2.1 2 27.60-28.35 OsPIE1 (LOC_Os02g46450)
qHD2.2 2 28.45-28.65 LOC_Os02g46710; LOC_Os02g46940
qHD3.1 3 30.45-31.05 LOC_Os03g53190; LOC_Os03g54160; LOC_Os03g54170
qHD3.2 3 31.85-32.45 LOC_Os03g55990
qHD3.3 3 33.10-33.55 LOC_Os03g58400; LOC_Os03g58530; LOC_Os03g58530
qHD7.1 7 8.65-8.85
qHD7.2 7 22.05-22.55
qHD8.1 8 4.20-4.55 DTH8 (LOC_Os08g07740)
qHD8.2 8 4.65-5.15 LOC_Os08g08210; LOC_Os08g08830
qHD9.1 9 16.55-16.75
qHD10.1 10 16.35-16.65
qHD10.2 10 16.85-16.95 Ehd1 (LOC_Os10g32600)
qHD10.3 10 17.85-17.95
[1] Fujino K, Sekiguchi H . Mapping of quantitative trait loci controlling heading date among rice cultivars in the northernmost region of Japan. Breed Sci, 2008,58:367-373
doi: 10.1270/jsbbs.58.367
[2] Cheng L R, Wang J M, Ye G, Luo C G, Xu J L, Li Z K . Identification of stably expressed QTL for heading date using reciprocal introgression line and recombinant inbred line populations in rice. Genet Res, 2012,94:245-253
doi: 10.1017/S0016672312000444 pmid: 23298447
[3] 戴高兴, 杨占烈, 邓国富, 张迎信, 王会民, 翟荣荣, 曹立勇, 程式华 . 超级杂交稻协优9308重组自交系主茎叶片数的动态QTL分析. 中国水稻科学, 2012,26:291-296
Dai G X, Yang Z L, Deng G F, Zhang Y X, Wang H M, Zhai R R, Cao L Y, Cheng S H . QTL analysis for leaf number on main stem in RILs of super hybrid rice Xieyou 9308. Chin J Rice Sci, 2012,26:291-296 (in Chinese with English abstract)
[4] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y . Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12:2473-2484
[5] Takahashi Y, Shomura A, Sasaki T, Yano M . Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001,98:7922-7927
doi: 10.1073/pnas.111136798
[6] Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M . Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002,43:1096-1105
doi: 10.1093/pcp/pcf156
[7] Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A . Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Gene Dev, 2004,18:926-936
[8] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767
[9] Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J . DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010,153:1747-1758
doi: 10.1104/pp.110.156943 pmid: 20566706
[10] Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q . Heading date gene, dth3 controlled late flowering in O. glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep, 2011,30:2243-2254
[11] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z . A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height and heading date in rice. Mol Plant, 2011,4:319-330
doi: 10.1093/mp/ssq070
[12] Matsubara K, Ogisotanaka E, Hori K, Ebana K, Ando T, Yano M . Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol, 2012,53:709-716
doi: 10.1093/pcp/pcs028 pmid: 22399582
[13] Gao H, Zheng X, Fei G, Chen J, Jin M, Ren Y, Wu W, Zhou K, Sheng P, Zhou F, Jiang L, Wang J, Zhang X, Guo X, Wang J, Cheng Z, Wu C, Wang H, Wan J . Ehd4 encodes a novel and Oryza-Genus-Specific regulator of photoperiodic flowering in rice. PLoS Genet, 2013,9:e1003281
doi: 10.1371/journal.pgen.1003281 pmid: 3578780
[14] Hori K, Ogisotanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M . Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J Cell Mol Biol, 2013,76:36-46
[15] Koo B H, Yoo S C, Park J W, Kwon C T, Lee B D, An G, Zhang Z Y, Li J J, Li Z C, Paek N C . Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant, 2013,6:1877-1888
doi: 10.1093/mp/sst088 pmid: 23713079
[16] Ogisotanaka E, Matsubara K, Yamamoto S, Nonoue Y, Wu J, Fujisawa H, Ishikubo H, Tanaka T, Ando T, Matsumoto T . Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS One, 2013,8:e75959
[17] Wu W, Zheng X M, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang H J, Wang Q, Zhou K, Wang J, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J . Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA, 2013,110:2775-2780
doi: 10.1073/pnas.1213962110 pmid: 23388640
[18] Sun B, Zhan X D, Lin Z C, Wu W X, Yu P, Zhang Y X, Sun L P, Cao L Y, Cheng S H . Fine mapping and candidate gene analysis of qHD5, a novel major QTL with pleiotropism for yield-related traits in rice ( Oryza sativa L.). Theor Appl Genet, 2016,130:1-12
[19] Shen G, Xing Y . Two novel QTLs for heading date are identified using a set of chromosome segment substitution lines in rice ( Oryza sativa L.). J Genet Genomics, 2014,41:659-662
[20] Hori K, Nonoue Y, Ono N, Shibaya T, Ebana K, Matsubara K, Ogisotanaka E, Tanabata T, Sugimoto K, Taguchishiobara F . Genetic architecture of variation in heading date among Asian rice accessions. BMC Plant Biol, 2015,15:115
doi: 10.1186/s12870-015-0501-x
[21] Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q . Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010,107:10578-10583
doi: 10.1073/pnas.1005931107 pmid: 20498060
[22] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q . Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2012,6:e17595
[23] Chen L, Gao W, Guo T, Huang C, Huang M, Wang J, Xiao W, Yang G, Liu Y, Wang H, Chen Z. A genotyping platform assembled with high-throughput DNA extraction, codominant functional markers, and automated CE system to accelerate marker-assisted improvement of rice. Mol Breed, 2016, 36: 123,
[24] McCouch S R . Gene nomenclature system for rice. Rice, 2008,1:72-84
doi: 10.1007/s12284-008-9004-9
[25] Golicz A A, Bayer P E, Edwards D . Skim-based genotyping by sequencing. Methods Mol Biol, 2015,1245:257-270
doi: 10.1007/978-1-4939-1966-6
[26] Yu H, Xie W, Li J, Zhou F, Zhang Q . A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014,12:28-37
doi: 10.1111/pbi.12113
[27] Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H . Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars ( Oryza sativa L.). Theor Appl Genet, 2000,101:569-573
doi: 10.1007/s001220051517
[28] Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland A J . Genetic dissection of heading time and its components in rice. Theor Appl Genet, 2001,102:1236-1242
doi: 10.1007/s001220100539
[29] Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S , Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL×environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003,108:141-153
doi: 10.1007/s00122-003-1401-2 pmid: 12961067
[30] Xiao J, Li J, Yuan L, Tanksley S D . Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996,92:230-244
doi: 10.1007/BF00223380 pmid: 24166172
[31] Thomson M J, Tai T H, Mcclung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P , McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003,107:479-493
doi: 10.1007/s00122-003-1270-8 pmid: 12736777
[32] Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K . Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003,107:89-101
doi: 10.1007/s00122-004-1890-7 pmid: 15647921
[33] Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M . Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed Sci, 2001,51:191-197
doi: 10.1270/jsbbs.51.191
[34] Sarma R N, Gill B S, Sasaki T, Galiba G, Sutka J, Laurie D A, Snape J W . Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet, 1998,97:103-109
doi: 10.1007/s001220050872
[35] Lin H, Liang Z W, Sasaki T, Yano M . Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci, 2003,53:51-59
doi: 10.1270/jsbbs.53.51
[36] Jiang L, Xu J, Wei X, Wang S, Tang J, Zhai H, Wan J . The inheritance of early heading in the rice variety USSR5. J Genet Genomics, 2007,34:46-55
doi: 10.1016/S1673-8527(07)60006-X pmid: 17469777
[37] 国广泰史, 钱前, 佐藤宏之, 滕胜, 曾大力, 藤本宽, 朱立煌 . 水稻纹枯病抗性QTL分析. 遗传学报, 2002,29:50-55
Kunihiro Y, Qian Q, Sato H, Teng S, Zeng D L, Fujimoto K, Zhu L H . QTL analysis of sheath blight resistance in rice ( Oryza sativa L.). Acta Genet Sin, 2002,29:50-55 (in Chinese with English abstract)
[38] Wang C M, Yasui H, Yoshimura A, Wan J M, Zhai H Q . Identification of quantitative trait loci controlling F2 sterility and heading date in rice. Acta Genet Sin, 2002,29:339-342
[39] Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L . Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet, 1996,93:1211-1217
doi: 10.1007/BF00223452 pmid: 24162532
[40] 谭震波, 沈利爽, 况浩池, 陆朝福, 陈英, 周开达, 朱立煌 . 水稻上部节间长度等数量性状基因的定位及其遗传效应分析. 遗传学报, 1996,23:439-446
doi: 10.1007/BF02951625
Tan Z B, Shen L S, Kuang H C, Lu C F, Chen Y, Zhou K D, Zhu L H . Identification of QTLs for lengths of the top internodes and other traits in rice and analysis of their genetic effects. Acta Genet Sin, 1996,23:439-446 (in Chinese with English abstract)
doi: 10.1007/BF02951625
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!