Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (12): 1796-1805.doi: 10.3724/SP.J.1006.2019.91025

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Growth habit identification and diversity and stability analysis of heading date in Tibetan barley (Hordeum vulgare L.)

Lhundrupnamgyal1,2,3,4,5,Hui-Hui LI5,Gang-Gang GUO5, Chemiwangmo2,3,Li-Yun GAO2,3,Ya-Wei TANG2,3, Nyematashi2,4, Dawadondrup2,3,*(), Dolkar1,*()   

  1. 1 Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet 860000, China
    2 State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
    3 Institute of Agricultural Sciences, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet 850002, China
    4 Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, Tibet 850002, China
    5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-03-20 Accepted:2019-06-22 Online:2019-12-12 Published:2019-07-15
  • Contact: Dawadondrup, Dolkar E-mail:dwdunzhu@126.com;slzhuoga@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31660299);the Tibet Department of Major Projects(XZ201801NA01);the Tibet Agricultural and Animal Husbandry College Graduate Innovation Program funded project YJS2017-07(502000114)

Abstract:

To improve the utilization of Tibetan barley germplasm and select appropriate parents in hybridization breeding, evaluated the growth habit and heading date diversity of 1605 Tibetan barley germplasm under the spring and autumn sowing conditions in Nyingchi and Lhasa, Tibet. The growth habit was determined by the difference in heading date observed in two spring sowing dates in Lhasa, i.e. normal spring sowing I and 10 days later of spring sowing II, showing that 96.2% of the landraces were spring barley distributed in all three ecological regions; 3.8% of the landraces were the winter barley accessions originated mainly from the southeastern ecological region of Tibet. Shannon-Wiener’s analysis showed that the heading date diversity was higher under spring-sown environment than under autumn-sown environment. The heading date diversity was highest in Lhasa region with spring sowing, moderate in Nyingchi spring-sown environment, and lowest in Nyingchi autumn-sown environment. In the same environment, landraces had higher diversity than modern varieties. A total of 368 spring-type landraces and 21 varieties were stable in heading date diversity across environments, and the cultivar Kangqing 3 had the highest stability among all tested materials. This study helps to further understand the growth habits, heading dates diversity and environmental stability of barley resources in Tibet, and provides useful information for the development of broad-adapted barley varieties.

Key words: barley, growth habit, heading date diversity, stability

Fig. 1

Identification of spring/winter growth habit in Lhasa"

Table 1

Origin and type of Tibet barley germplasm"

来源
Origin
类型
Type
品种数
No. of accessions
合计
Total
比例
Proportion (%)
拉萨 Lhasa 春性地方品种 Spring landrace (SL) 125 155 9.64
冬性地方品种 Winter landrace (WL) 3
春性育成品种 Spring variety (SV) 21
冬性育成品种 Winter variety (WV) 6
山南 Lhoka 春性地方品种 Spring landrace (SL) 355 377 23.45
冬性地方品种 Winter landrace (WL) 12
春性育成品种 Spring variety (SV) 10
日喀则 Shigatse 春性地方品种 Spring landrace (SL) 538 573 35.63
冬性地方品种 Winter landrace (WL) 6
春性育成品种 Spring variety (SV) 29
昌都 Chamdo 春性地方品种 Spring landrace (SL) 275 282 17.60
冬性地方品种 Winter landrace (WL) 6
春性育成品种 Spring variety (SV) 1
林芝 Nyingchi 春性地方品种 Spring landrace (SL) 114 147 9.14
冬性地方品种 Winter landrace (WL) 30
春性育成品种 Spring variety (SV) 2
冬性育成品种 Winter variety (WV) 1
阿里 Ngari 春性地方品种 Spring landrace (SL) 40 40 2.49
那曲 Nagqu 春性地方品种 Spring landrace (SL) 1 1 0.06
西藏其他地区 Other Tibetan areas 春性育成品种 Spring variety (SV) 30 30 1.87

Fig. 2

Geographical distribution of different growth habit germplasm Gray line indicates the Yarlung Zangbo River basin, and the pie chart size represents the proportion to the entire material."

Fig. 3

Heading date distribution of Tibet barley germplasm in three environments Gray dotted line indicates the averaged value. SL: spring landrace; SV: spring variety; WL: winter landrace; WV: winter variety. 2017 Nyingchi-A: 2017 Nyingchi-Autumn sown; 2018 Nyingchi-S: 2018 Nyingchi-Spring sown; 2018 Lhasa-S: 2018 Lhasa-Spring sown."

Table 2

Changes in heading date and distribution characteristics of Tibet barley germplasm"

试验
Trial
品种类型
Variety type
品种数
No. of samples
平均值 Mean±SD 变幅
Range
变异系数CV (%) 多样性指数Shannon H°
2017年林芝秋播2017 Nyingchi-A 春性地方品种 Spring landrace (SL) 1332 174.54±9.33 160.00-204.00 5.53 1.33
冬性地方品种 Winter landrace (WL) 55 182.86±10.04 161.00-200.00 5.49 1.00
春性育成品种 Spring variety (SV) 93 174.40±6.68 160.00-202.00 3.83 1.13
冬性育成品种 Winter variety (WV) 7 185.33±8.36 180.00-202.00 4.51 0.56
2018年林芝春播2018 Nyingchi-S 春性地方品种 Spring landrace (SL) 1448 73.16±6.33 59.00-94.00 8.65 1.37
冬性地方品种 Winter landrace (WL) 52 84.72±6.39 64.00-97.00 7.55 1.25
春性育成品种 Spring variety (SV) 92 75.78±5.50 62.00-85.00 7.26 0.96
冬性育成品种 Winter variety (WV) 6 80.60±7.09 71.00-88.00 8.80 0.73
2018年拉萨春播2018 Lhasa-S 春性地方品种 Spring landrace (SL) 1448 68.19±5.62 53.00-85.00 8.36 1.41
冬性地方品种 Winter landrace (WL) 4 79.00±9.17 69.00-87.00 11.60 1.15
春性育成品种 Spring variety (SV) 93 70.18±4.19 59.00-81.00 6.04 0.64
冬性育成品种 Winter variety (WV) 4 73.75±3.28 71.00-75.00 4.45 0.69

Fig. 4

Comparison of heading date of different growth habit germplasm in three sowing times SL: spring landrace; SV: spring variety; WL: winter landrace; WV: winter variety. 2017 Nyingchi-A: 2017 Nyingchi-Autumn sown; 2018 Nyingchi-S: 2018 Nyingchi-Spring sown; 2018 Lhasa-S: 2018 Lhasa-Spring sown. Significant difference (P < 0.01)."

Fig. 5

Comparison of heading date between different environments under spring sowing conditions SL: spring landrace; SV: spring variety; WL: winter landrace; WV: winter variety. 2018 Nyingchi-S: 2018 Nyingchi-Spring sown; 2018 Lhasa-S: 2018 Lhasa-Spring sown. Significant difference (P<0.01)."

Fig. 6

Correlation between heading dates among different sowing time and environments A, B, C represents the correlation coefficient of sowing time or environments. 2017 Nyingchi-A: 2017 Nyingchi-Autumn sown; 2018 Nyingchi-S: 2018 Nyingchi-Spring sown; 2018 Lhasa-S: 2018 Lhasa-Spring sown."

Fig. 7

Frequency of five grades after standardization of heading date values in different sowing times I: early heading; II: partial early heading; III: middle heading; IV: partial late heading; V: late heading. 2017 Nyingchi-A: 2017 Nyingchi-Autumn sown; 2018 Nyingchi-S: 2018 Nyingchi-Spring sown; 2018 Lhasa-S: 2018 Lhasa-Spring sown."

Fig. 8

Stability analysis of different varieties in heading dates across different sowing times and environmental conditions SL: spring landrace; SV: spring variety; WL: winter landrace; WV: winter variety. I: early heading; II: partial early heading; III: middle heading; IV: partial late heading; V: late heading. a: 2017 Nyingchi-Autumn sown; b: 2018 Nyingchi-Spring sown; c: 2018 Lhasa-Spring sown. Red number indicates samples shared by the three environments."

Fig. 9

Stability analysis of the heading date of the main variety of Tibet barley in different sowing times and environments I: early heading; II: partial early heading; III: middle heading; IV: partial late heading; V: late heading. 2017 Nyingchi-A: 2017 Nyingchi-Autumn sown; 2018 Nyingchi-S: 2018 Nyingchi-Spring sown; 2018 Lhasa-S: 2018 Lhasa-Spring sown."

[1] Pourkheirandish M, Komatsuda T . The importance of barley genetics and domestication in a global perspective. Ann Bot, 2007,100:999-1008.
doi: 10.1093/aob/mcm139
[2] Turner A, Beales J, Faure S, Dunford R P, Laurie D A . The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005,310:1031-1034.
doi: 10.1126/science.1117619
[3] Jones H, Leigh F J, Mackay I, Bower M A, Smith L M, Charles M P, Jones G, Jones M K, Brown T A, Powell W . Population based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol, 2008,25:2211-2219.
doi: 10.1093/molbev/msn167
[4] Ibrahim A, Harrison M, Meinke H, Fan Y, Johnson P, Zhou M . A regulator of early flowering in barley (Hordeum vulgare L.). PLoS One, 2018,13:e0200722.
doi: 10.1371/journal.pone.0200722
[5] Doebley J F, Gaut B S, Smith B D . The molecular genetics of crop domestication. Cell, 2006,127:1309-1321.
doi: 10.1016/j.cell.2006.12.006
[6] Sang T . Genes and mutations underlying domestication transitions in grasses. Plant Physiol, 2009,149:63-70.
doi: 10.1104/pp.108.128827
[7] Trevaskis B, Bagnall D J, Ellis M H, Peacock W J, Dennis E S . MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA, 2003,100:13099-13104.
doi: 10.1073/pnas.1635053100
[8] Saisho D, Ishii M, Hori K, Sato K . Natural variation of barley vernalization requirements: implication of quantitative variation of winter growth habit as an adaptive trait in East Asia. Plant Cell Physiol, 2011,52:775-784.
doi: 10.1093/pcp/pcr046
[9] Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Laurie D A, Kato K . Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat(Triticum aestivum L.), and their effect on heading time. Mol Breed, 2012,31:27-37.
doi: 10.1007/s11032-012-9765-0
[10] Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R . Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet, 2012,44:1388-1392.
doi: 10.1038/ng.2447
[11] Laurie D A, Pratchett N, Bezant J H, Snape J W . RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome, 1995,38:575-585.
doi: 10.1139/g95-074
[12] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J . Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003,100:6263-6268.
doi: 10.1073/pnas.0937399100
[13] Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J L, Echenique V, Dubcovsky J . The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004,303:1640-1644.
doi: 10.1126/science.1094305
[14] Yan L L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J . The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006,103:19581-19586.
doi: 10.1073/pnas.0607142103
[15] Faure S, Higgins J, Turner A, Laurie D A . The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics, 2007,176:599-609.
doi: 10.1534/genetics.106.069500
[16] Distelfeld A, Li C, Dubcovsky J . Regulation of flowering in temperate cereals. Curr Opin Plant Biol, 2009,12:178-184.
doi: 10.1016/j.pbi.2008.12.010
[17] 卢良恕 . 中国大麦学. 北京: 中国农业出版社, 1996.
Lu L S. Chinese Barley. Beijing: China Science and Technology Press, 1996. pp 3-7(in Chinese).
[18] 胡颂杰 . 西藏农业概论. 成都: 四川科学技术出版社, 1995.
Hu S J. An Introduction of Tibet Agriculture. Chengdu: Sichuan Science and Technology Press, 1995 ( in Chinese)
[19] Tashi N. Food preparation from hull-less barley in Tibet. In: Food Barley—Importance, Uses and Local Knowledge: Proc. International Workshop on Food Barley Improvement, 2002. Grando S, Macpherson H G, eds. ICARDA, Aleppo, Syria, 2005.
[20] 朱睦元, 张京 . 大麦(青稞)营养分析及其食品加工. 杭州: 浙江大学出版社, 2015.
Zhu M Y, Zhang J. Barley Nutritional Analysis and Food Processing. Hangzhou: Zhejiang University Press, 2015 (in Chinese).
[21] 马得泉 . 中国西藏大麦遗传资源. 北京: 中国农业出版社, 2000.
Ma D Q. Genetic Resources of Tibetan Barley in China. Beijing: China Science and Technology Press, 2000 (in Chinese).
[22] 张京, 曹永生 . 我国大麦基因库的群体结构和表型多样性研究. 中国农业科学, 1998,32(4):20-26.
Zhang J, Cao Y S . Population Structure and Phenotypic Diversity of Barley Gene Bank in China. Sci Agric Sin, 1998 (in Chinese with English abstract).
[23] 冯宗云 . 徐廷文大麦学术文集. 成都四川科学技术出版社, 2006.
Feng Z Y. Xu Tingwen's Work for Barley Science. Chengdu: Sichuan Science and Technology Press, 2006 ( in Chinese)
[24] 达瓦顿珠. 中国大麦低温春化和光周期基因单倍型及表型关联分析. 中国农业科学院研究生院博士学位论文, 北京, 2015. pp 25-28.
Dawadondrop. Haplotypes and Phenotypic Association Analsis of Vernalization and Photoperiod Genes in Chinese Barley in china. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. pp 25-28 (in Chinese with English abstract).
[25] Alqudah A M, Sharma R, Pasam R K, Graner A, Kilian B, Schnurbusch T . Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS One, 2014,9:e113120.
doi: 10.1371/journal.pone.0113120
[26] Alqudah A M, Schnurbusch T . Heading date is not flowering time in spring barley. Front Plant Sci, 2017,8:896.
doi: 10.3389/fpls.2017.00896
[27] Hemming M N, Fieg S, Peacock W J, Dennis E S, Trevaskis B . Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genom, 2009,282:107-117.
doi: 10.1007/s00438-009-0449-3
[28] Dondup D, Dong G Q, Xu D D, Zhang L S, Zha S, Yuan X M, Tashi N, Zhang J, Guo G G . Allelic variation and geographic distribution of vernalization genes HvVRN1 and HvVRN2 in Chinese barley germplasm. Mol Breed, 2016,36:11
doi: 10.1007/s11032-016-0434-6
[29] Shannon C E, Weaver W. The Mathematical Theory of Communication. Urbana: University of Illinons Press, 1949.
[30] 王建康 . 数量遗传学. 北京: 科学出版社, 2017.
Wang J K. Quantitative Genetics. Beijing: Science Press, 2017 (in Chinese).
[31] 强小林 . 西藏青稞品种系谱及其分析. 中国作物学会大麦专业委员会. 中国大麦文集. 北京: 中国农业科技出版社, 1986. pp 189-195.
Qiang X L. The pedigree and its analysis of barley varieties in Tibet. In: Barley Professional Committee of China Crop Society. Barley Science in China. Beijing: China Agricultural Science and Technology Press, 1986. pp 189-195(in Chinese).
[1] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[2] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[3] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[4] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[5] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[6] ZHANG Fan, YANG Qian. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield [J]. Acta Agronomica Sinica, 2021, 47(12): 2522-2531.
[7] XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350.
[8] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
[9] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[10] Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461.
[11] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[12] SHI Li-Jie,JIANG Cong-Cong,WANG Fang-Mei,YANG Ping,FENG Zong-Yun. Genome-wide characterization and transcriptional analysis of the protein disulfide isomerase-like genes in barley (Hordeum vulgare) [J]. Acta Agronomica Sinica, 2019, 45(9): 1365-1374.
[13] Jian-Bin GUO,Bei WU,Wei-Gang CHEN,Li HUANG,Yu-Ning CHEN,Xiao-Jing ZHOU,Huai-Yong LUO,Nian LIU,Xiao-Ping REN,Hui-Fang JIANG. Stability of major fatty acids contents of peanut varieties grown in different ecological regions [J]. Acta Agronomica Sinica, 2019, 45(5): 676-682.
[14] WANG Kai,ZHAO Xiao-Hong,YAO Xiao-Hua,YAO You-Hua,BAI Yi-Xiong,WU Kun-Lun. Relationship of stem characteristics and lignin synthesis with lodging resistance of hulless barley [J]. Acta Agronomica Sinica, 2019, 45(4): 621-627.
[15] LIFa-Ji,XUXue-Xin,XIAOYong-Gui,HEZhong-Hu,WANGZhi-Min. Effect of Nitrogen on Yield Related Traits and Nitrogen Utilization Efficiency in Zhongmai 175 and Jingdong 17 [J]. Acta Agron Sin, 2016, 42(12): 1853-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!