Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1517-1525.doi: 10.3724/SP.J.1006.2020.02008

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines

WANG Xiao-Lei1(), LI Wei-Xing1, ZENG Bo-Hong2, SUN Xiao-Tang1, OU-YANG Lin-Juan1, CHEN Xiao-Rong1, HE Hao-Hua1,*(), ZHU Chang-Lan1,*()   

  1. 1 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education / Jiangxi Super Rice Engineering Technology Research Center, Nanchang 330045, Jiangxi, China
    2 Jiangxi Super Rice Research and Development Center of Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2020-02-13 Accepted:2020-06-02 Online:2020-10-12 Published:2020-06-23
  • Contact: Hao-Hua HE,Chang-Lan ZHU E-mail:wxl0vip@163.com;hhhua64@163.com;zhuchanglan@163.com
  • Supported by:
    National Natural Science Foundation of China(31860373);National Major Project for Developing New GM Crops(2016-ZX08001-002);“5511” Superior Science and Technology Innovation Team Project of Jiangxi Province, China(2016-5BCB19005)

Abstract:

Grain shape and 1000-grain weight are the important factors affecting rice yield. Discovering the excellent genes of these traits is of great significance for super high yield rice breeding. In this study, a set of chromosome segment substitute lines (CSSLs), derived from a cross between Koshihikari (a japonica cultivar, as donor patent) and Changhui 121 (an indica restorer line, as a background patent), were used to quantitative trait locus (QTLs) detection and stability analysis in three environments. The results showed that a total of 59 QTLs were identified on chromosomes 1, 2, 3, 4, 5, 6, 7, 10, 11, and 12, respectively, whose contribution rate was 0.77%-36.26%. Among them, 10 pleiotropic QTLs were found, and qGW2-1, qGW2-2, qGW3-1, qGW3-2, qGL3, and qGL12 could all be detected in three environments. Furthermore, qGW3-1 is a novel identified QTL locus. These results lay a foundation for further fine mapping, cloning and marker-assisted breeding of grain shape genes.

Key words: rice, chromosome segment substitution lines (CSSLs), grain shape, 1000-grain weight, quantitative trait locus (QTL)

Fig. 1

Location of QTL traits of rice grain shape and thousand grain weight on the chromosomes GL: grain length; GW: grain width; TGW: thousand grain weight."

Table 1

Traits of CSSLs and its parents Changhui 121 and Koshihikari"

性状
Trait
环境
Environment
亲本Parents 置换系群体CSSL
昌恢121a
Changhui 121a
越光a
Koshihikaria
均值±标准差
Mean ± SD
变幅
Ranges
变异系数
CV (%)
粒长GL (mm) E1 9.30±0.48** 7.30±1.56 8.58±0.22 7.60-10.10 0.03
E2 9.84±0.08** 7.40±0.14 9.18±0.34 7.80-9.80 0.04
E3 9.04±0.14** 7.09±0.60 8.91±0.34 7.60-9.82 0.04
粒宽GW (mm) E1 2.40±0.12* 3.30±0.56 2.73±0.13 2.20-3.20 0.05
E2 2.48±0.12* 3.20±0.00 2.58±0.17 2.40-3.26 0.07
E3 2.33±0.19** 3.24±0.60 2.48±0.16 2.22-3.30 0.06
千粒重TGW (g) E1 21.20±1.02** 18.78±0.32 22.36±0.34 16.50-26.80 0.02
E2 20.18±0.09** 18.66±0.36 22.51±1.53 16.90-26.62 0.07
E3 21.91±0.09** 18.89±0.60 21.32±1.46 16.90-26.40 0.07

Table 2

QTL of rice grain shape and thousand grain weight identified by 208 CSSLs"

性状
Trait
位点
QTL
染色体
Chr.
区间
Marker interval
LOD值LOD value 贡献率PVE (%) 加性效应Additive effect
E1 E2 E3 E1 E2 E3 E1 E2 E3
千粒重TGW (g) qTGW1 1 RM6292-RM5362 5.26 6.75 1.36
qTGW2-1 2 RM1358-RM5812 8.34 8.47 2.11
qTGW2-2 2 RM8030-RM1092 28.21 13.67 36.26 19.34 2.56 1.55
qTGW2-3 2 RM1092-RM208 8.52 8.67 -1.85
qTGW3-1 3 RM3646-RM3513 4.41 4.28 -1.17
qTGW3-2 3 RM3513-RM2334 3.68 3.61 7.07 4.55 1.02 0.80
qTGW4 4 RM6089-RM5503 7.73 4.31 7.80 8.35 -1.08 -0.95
qTGW5 5 RM3295-RM3476 3.01 5.37 2.88 6.91 1.23 1.58
qTGW6 6 RM5371-RM7641 5.96 5.89 -1.16
qTGW7 7 RM3186-RM3404 3.92 2.66 7.56 3.31 -0.76 -0.49
qTGW11 11 RM6894-RM5731 5.00 6.39 -0.60
粒宽
GW (mm)
qGW1-1 1 RM312-RM5638 3.24 0.77 0.08
qGW1-2 1 RM5389-RM6696 9.70 2.49 -0.06
qGW2-1 2 RM1358-RM5812 46.92 3.23 27.80 18.99 1.26 11.21 0.31 0.10 0.29
qGW2-2 2 RM8030-RM1092 14.21 26.45 58.34 3.84 13.64 35.01 -0.10 -0.29 -0.30
qGW3-1 3 RM5748-RM6676 16.43 3.91 5.02 4.56 1.55 1.54 0.13 0.07 0.08
qGW3-2 3 RM3513-RM2334 19.31 9.43 9.82 5.54 3.98 3.19 0.11 0.11 0.10
qGW4-1 4 RM5412-RM3471 12.33 3.26 0.06
qGW4-2 4 RM6089-RM5503 30.53 4.03 10.04 1.59 -0.12 -0.06
qGW5-1 5 RM3295-RM3476 11.98 3.15 0.10
qGW5-2 5 RM7423-RM1054 12.36 3.27 -0.16
qGW6 6 RM8258-RM2615 10.64 4.93 2.75 1.97 0.09 0.09
qGW10 10 RM5271-RM2125 9.72 4.11 0.13
qGW11 11 RM6272-RM287 7.99 2.01 -0.08
qGW12 12 RM8216-RM6288 12.85 3.04 3.41 0.92 -0.09 -0.04
粒长
GL (mm)
qGL1-1 1 RM1220-RM259 7.90 7.36 0.19
qGL1-2 1 RM5389-RM6696 10.47 10.04 0.41
qGL2 2 RM1358-RM5812 5.39 4.88 -0.33
qGL3 3 RM3646-RM3513 12.86 16.33 18.19 12.68 18.82 23.05 -0.41 -0.48 -0.53
qGL5 5 RM7444-RM3328 14.75 12.09 14.87 13.61 -0.32 -0.30
qGL6 6 RM8258-RM2615 8.65 3.28 8.12 3.34 -0.30 -0.19
qGL7-1 7 RM5711-RM8263 5.10 4.60 -0.19
qGL7-2 7 RM3186-RM3404 3.85 3.84 -0.13
qGL10-1 10 RM5271-RM2125 4.94 4.46 4.44 4.49 -0.22 -0.22
qGL10-2 10 RM1375-RM6704 2.67 2.7 -0.17
qGL12 12 RM19-RM6296 6.04 5.38 4.85 5.51 5.47 5.02 -0.14 -0.13 -0.13

Table 3

Pleiotropic regional analysis in rice"

染色体
Chr.
区间
Marker interval
性状
Trait
多效性QTL
Pleiotropic QTL
已克隆的基因
Cloned gene
参考文献
Reference
1 RM5389-RM6696 GW, GL qGL1-2, qGW1-2 _ _
2 RM1358-RM5812 TGW, GW, GL qTGW2-1, qGL2, qGW2-1 LG1/OsUBP15, GW2 Shi et al.[25]; Song et al.[8]
2 RM8030-RM1092 TGW, GW qTGW2-2, qGW2-2 _ _
3 RM3646-RM3513 TGW, GL qTGW3-1, qGL3 GS3 Fan et al.[11]
3 RM3513-RM2334 TGW, GW qTGW3-2, qGW3-2 _ _
4 RM6089-RM5503 TGW, GW qGW4-2, qTGW4 _ _
5 RM3295-RM3476 TGW, GW qTGW5, qGW5-1 gW5 Weng et al.[9]
6 RM8258-RM2615 GW, GL qGL6, qGW6 _ _
7 RM3186-RM3404 TGW, GL qTGW7, qGL7-2 BG2/CYP78A13 Xu et al.[26]
10 RM5271-RM2125 GW, GL qGW10, qGL10-1 _ _

Fig. 2

Differences of phenotypic values of rice grain shape traits between genetic background parent Changhui 121 and the CSSLs harboring the QTL alleles. NC and HN represent Nanchang and Hainan, respectively. ** means significant differences by Student’s t-test (P < 0.01) between rice grain shape traits of Changhui 121 and the CSSLs harboring the QTL alleles."

[1] 邢永忠, 谈移芳, 徐才国, 华金平, 孙新立. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因. 植物学报, 2001,43:840-845.
Xing Y Z, Tan Y F, Xu C G, Hua J P, Sun X L. Quantitative trait genes of grain appearance traits were identified by rice recombinant inbred population. Acta Bot Sin, 2001,43:840-845 (in Chinese with English abstract).
[2] 余守武, 樊叶杨, 杨长登, 李西明. 水稻第1染色体短臂粒长和粒宽QTL的精细定位. 中国水稻科学, 2008,22:465-471.
Yu S W, Fan Y Y, Yang C D, Li X M. Detailed mapping of QTLs for short arm length and grain width in rice chromosome 1. Chin J Rice Sci, 2008,22:465-471 (in Chinese with English abstract).
[3] 彭伟业, 孙平勇, 潘素君, 李魏, 戴良英. 水稻品种魔王谷水稻粒形、剑叶性状和株高QTL定位. 作物学报, 2018,44:1673-1680.
doi: 10.3724/SP.J.1006.2018.01673
Peng W Y, Sun P Y, Pan S J, Li W, Dai L Y. Mapping of QTL for grain shape, leaf character and plant height of rice variety Mowanggu. Acta Agron Sin, 2018,44:1673-1680 (in Chinese with English abstract).
[4] 周梦玉, 宋昕蔚, 徐静, 付雪, 李婷, 朱雨晨, 肖幸运, 毛一剑, 曾大力, 胡江, 朱丽, 任德勇, 高振宇, 郭龙彪, 钱前, 吴明国, 林建荣, 张光恒. 籼稻C84和粳稻春江16B重组自交系遗传图谱构建及籽粒性状QTL定位与验证. 中国水稻科学, 2018,32:207-218.
Zhou M Y, Song X W, Xu J, Fu X, Li T, Zhu Y C, Xiao X Y, Mao Y J, Zeng D L, Hu J, Zhu L, Ren D Y, Gao Z Y, Gou L B, Qian Q, Wu M G, Lin J R, Zhang G H. Construction of genetic map of indica rice C84 and japonica rice Chunjiang 16B recombinant inbred lines and mapping and verification of QTL for grain traits. Chin J Rice Sci, 2018,32:207-218 (in Chinese with English abstract).
[5] 丁膺宾, 张莉珍, 许睿, 王艳艳, 郑晓明, 张丽芳, 程云连, 吴凡, 杨庆文, 乔卫华, 兰进好. 基于染色体片段置换系的野生稻粒长QTL-qGL12 的精细定位. 中国农业科学, 2018,51:3435-3444.
doi: 10.3864/j.issn.0578-1752.2018.18.001
Ding Y B, Zhang L Z, Xu R, Wang Y Y, Zheng X M, Zhang L F, Cheng Y L, Wu F, Yang Q W, Qiao W H, Lan J H. Fine localization of wild rice grain length QTL-qGL12 based on chromosome fragment replacement line. Sci Agric Sin, 2018,51:3435-3444 (in Chinese with English abstract).
[6] 孙妍, 苏龙, 乔卫华, 郑晓明, 齐兰, 丁膺宾, 许睿, 张丽芳, 程云连, 兰进好, 杨庆文. 基于染色体片段置换系的野生稻粒宽QTL-q GW8-1的精细定位. 植物遗传资源学报, 2018,19:135-142.
Sun Y, Su L, Qiao W H, Zheng X M, Qi L, Ding Y B, Xu R, Zhang L F, Cheng Y L, Lan J H, Yang Q W. Precise mapping of grain width QTL-qGW8-1 in wild rice based on chromosome fragment replacement line. J Plant Genet Resour, 2018,19:135-142 (in Chinese with English abstract).
[7] Feng Y, Lu Q, Zhai R, Zhang M, Xu Q, Yang Y, Wang S, Yuan X, Yu H, Wang Y, Wei X. Genome wide association mapping for grain shape traits in indica rice. Planta, 2016,244:819.
doi: 10.1007/s00425-016-2548-9 pmid: 27198135
[8] Song X J, Huan W, Shi M, Zhu M Z, Lin X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637
[9] Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jian L, Su N, Wan J M. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008,179:2239-2252.
doi: 10.1534/genetics.108.089862 pmid: 18689882
[10] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPLl6 in rice. Nat Genet, 2012,44:950-954.
pmid: 22729225
[11] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171.
doi: 10.1007/s00122-006-0218-1
[12] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
doi: 10.1038/ng.977 pmid: 22019783
[13] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47:949-954.
doi: 10.1038/ng.3352 pmid: 26147620
[14] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[15] Wu W G, Liu X Y, Wang M H, Rachel S M, Luo X J, Marie N N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Rod A W, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017,3:1-7.
[16] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22:1666-1680.
doi: 10.1038/cr.2012.151
[17] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012,109:21534-21539.
doi: 10.1073/pnas.1219776110 pmid: 23236132
[18] Ken I, Naoki H, Yuka M, Naomi M, Nao H, Haruko O, Takayuki K, Kazuhiro U, Bunichi S, Atsuko O, Hisashi M, Etsuko K. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[19] Ying Z J, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018,11:750-753.
doi: 10.1016/j.molp.2018.03.007 pmid: 29567450
[20] 贺浩华, 傅军如, 朱昌兰. 香型超级杂交稻新组合淦鑫688. 杂交水稻, 2008, (3):80-82.
He H H, Fu J R, Zhu C L. Ganxin 688, a new combination of fragrant super hybrid rice. Hybrid Rice, 2008, (3):80-82 (in Chinese with English abstract).
[21] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[22] Wang J K, Wang X Y, Crossa J, Crouch J T, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006,88:93-104.
doi: 10.1017/S0016672306008408 pmid: 17125584
[23] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
doi: 10.1016/j.cj.2015.01.001
[24] McCouch S R. Gene nomenclature system for rice. Rice, 2008,1:72-84.
doi: 10.1007/s12284-008-9004-9
[25] 刘健, 牛付安, 江建华, 孙程, 陈兰, 郭媛, 付淑换, 洪德林. 多环境下粳稻产量及其相关性状的条件和非条件QTL定位. 中国水稻科学, 2012,26:144-154.
doi: 10.3969/j.issn.10017216.2012.02.003
Liu J, Niu F A, Jiang J H, Su C, Chen L, Gou Y, Fu S H, Hong D L. Location of conditional and unconditional QTL for japonica rice yield and its related traits in multiple environments. Chin J Rice Sci, 2012,26:144-154 (in Chinese with English abstract).
[26] 梁云涛, 潘英华, 徐志健. 利用野栽分离群体定位水稻粒型相关QTL. 西南农业学报, 2017,30:2161-216.
Liang Y T, Pan Y H, Xu Z J. Rice grain type-related QTLs were identified by isolated populations in wild cultivation. J Southwest Agric Univ, 2017,30:2161-216 (in Chinese with English abstract).
[27] Lin Z, Yan J, Su J, Liu H, Hu C, Li G, Wang F, Lin Y. Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice (Oryza sativa). Funct Plant Biol, 2019,46:857-868.
doi: 10.1071/FP18266 pmid: 31146805
[28] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018,11:736-749.
doi: 10.1016/j.molp.2018.03.005 pmid: 29567449
[29] Shi C L, Ren Y L, Liu L L, Wang F, Zhang H, Tian P, Pan T, Wang Y F, Jing R N, Liu T Z, Wu F Q, Lin Q B, Lei C L, Zhang X, Zhu S S, Guo X P, Wang J L, Zhao Z C, Wang J, Zhai H Q, Cheng Z J, Wan J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019,180:381-391.
doi: 10.1104/pp.19.00065 pmid: 30796160
[30] Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003,107:479-493.
doi: 10.1007/s00122-003-1270-8 pmid: 12736777
[31] Xu F, Fang J, Ou S J, Gao S P, Zhang F X, Du L, Xiao Y H, Wang H R, Sun X H, Chu J F, Wang G D, Chu C. Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ, 2015,38:800-811.
doi: 10.1111/pce.12452 pmid: 25255828
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!