Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (6): 869-877.doi: 10.3724/SP.J.1006.2020.94110

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction and characterization of a BAC library for flue-cured tobacco line with high resistance to blank shank

DONG Qing-Yuan1,4,MA De-Qing1,4,YANG Xue2,LIU Yong1,HUANG Chang-Jun1,YUAN Cheng1,FANG Dun-Huang1,YU Hai-Qin1,TONG Zhi-Jun1,SHEN Jun-Ru3,XU Yin-Lian5,LUO Mei-Zhong2,LI Yong-Ping1,ZENG Jian-Min1,*()   

  • Received:2019-07-29 Accepted:2020-01-15 Online:2020-06-12 Published:2020-01-24
  • Contact: Jian-Min ZENG E-mail:zengjm2017@163.com
  • Supported by:
    Grants of Yunnan Province Tobacco Company(2017YN04);Grants of Yunnan Province Tobacco Company(2019530000241004)

Abstract:

Tobacco (N. tabacum) is an important model crop in molecular biology research. In this study, a bacterial artificial chromosome (BAC) library of a flue-cured tobacco line 14-60 with high blank shank resistance and good quality was constructed. High molecular weight DNA was isolated using intact nuclei from tobacco, partially cleaved with Hind III and cloned into the pIndigoBAC536-S vector. The BAC library consisted of 414,720 clones arrayed in one thousand and eighty 384-microtite plates, with an average insert size of 123 kb ranging from 97.0-145.5 kb. No empty insert clone was found. Based on an estimated genome size of 4500 Mb for common tobacco, the BAC library was estimated to cover 11 times of genome equivalents. The utility of the library was further confirmed by screening the library with the primers of tobacco hemA, NtFT, and eIF4E-1 genes. The high capacity library will serve as a giant genomic resource for map-based cloning of quantitative trait loci or genes associated with important agronomic and smoking quality traits or resistance to blank shank, physical mapping and comparative genome analysis.

Key words: tobacco, genomic DNA, bacterial artificial chromosome (BAC), gene screening

Fig. 1

Partial digestions of tobacco DNA plugs The first lane is the λ ladder PFG marker, lanes 2-9 are enzyme digested bands of half plug. The order of enzyme concentration is 0, 0.3, 0.5, 1.0, 1.5, 2.0, 4.0, and 10.0 U μL-1. The enzyme digestion time is 15 min. "

Fig. 2

First size selection of tobacco genomic DNA DNA was separated on 1% CHEF agarose gel at 1 s-50 s linear ramp, 6 V cm-1, 14℃ in 0.5×TBE buffer for 18 h. The marker is λ ladder PFG marker. "

Fig. 3

Second size selection of tobacco genomic DNA DNA fragments were separated on 1% CHEF agarose gel at 4 s-4 s linear ramp, 6 V cm-1, 14℃ in 0.5×TBE buffer for 18 h. The marker used is λ ladder PFG marker. "

Fig. 4

Concentration of recovered DNA fragments The loading volumes for the recovered DNA fractions a1, a2, b1, b2, and the standard λDNA solutions of 1, 2, 3, 4 ng μL-1 are 1 μL each. "

Table 1

Statistics of common tobacco BAC library"

名称
Name
指标
Index
克隆数 Total clones 414720
384孔板数 Total 384-well plates 1080
载体 BAC vector pIndigoBAC536-S
感受态细胞 Competent cell DH10B
平均插入片段大小 Average insert size (kb) 123
烟草基因组覆盖度 Tobacco genome equivalent 11×
空载率 Insert-empty BACs (%) 0

Fig. 5

Insert detection of random tobacco BAC library clones (partially) It is the insert detection image of 40 randomly selected clones. Marker is λ ladder PFG. "

Fig. 6

PCR screening of Primary Mixing Pools 132-166 in No.2 plate (hemA) The marker is Trans2K DNA marker, and the bands from top to bottom represent 2000, 1000, 750, 500, 250, and 100 bp. "

Fig. 7

PCR Screening of Primary Mixing Pools 161-190 in No. 2 plate (eIF4E-1) The marker is Trans2K DNA marker, and the bands from top to bottom represent 2000, 1000, 750, 500, 250, and 100 bp. "

Fig. 8

PCR Screening of Primary Mixing Pools 898-927 in No. 9 plate (NtFT) The Marker is Trans2K DNA marker, and the bands from top to bottom represent 2000, 1000, 750, 500, 250, and 100 bp. "

[1] Liao L J, Liu L F, Lai K L . Somatic hybridization in the genus nicotiana: N. sylvestris and N. tomentosiformis. Memoirs College Agric Natl Taiwan Univ, 1990,30:73-82.
[2] Goodspeed, Harper T . The genus nicotiana. Soil Sci, 1955,80:250.
[3] Kenton A, Parokonny A S, Gleba Y Y, Bennett M D . Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet, 1993,240:159-169.
doi: 10.1007/BF00277053
[4] Gazdová B, Siroky J, Fajkus J, Brzobohaty B, Kenton A, Parokonny A, Heslop-Harrison J S, Palme K, Bezděk M . Characterization of a new family of tobacco highly repetitive DNA, GRS, specific for the Nicotiana tomentosiformis genomic component. Chromosome Res, 1995,3:245-254.
doi: 10.1007/BF00713050
[5] Ma J K, Drossard J, Lewis D, Altmann F, Boyle J, Christou P, Cole T, Dale P, van Dolleweerd C J, Isitt V, Katinger D, Lobedan M, Mertens H, Paul M J, Rademacher M, Hundleby P A G, Stiegler T, Stoger E, Twyman R M, Vcelar B, Fischer R, Cole T, . Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J, 2015,13:1106-1120.
doi: 10.1111/pbi.12416
[6] Tusé D, Tu T, McDonald K A, . Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. BioMed Res Int, 2014,2014:1-16.
[7] Vanhercke T, El Tahchy A, Liu Q, Zhou X R, Shrestha P, Divi U K, Ral J P, Mansour M P, Nichols P D, James C N, Horn P J, Chapman K D, Beaudoin F, Ruiz-López N, Larkin P J, de Feyter R C, Singh S P, Petrie J R, . Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J, 2014,12:231-239.
doi: 10.1111/pbi.12131
[8] Vasil V, Hildebrandt A C . Differentiation of tobacco plants from single, isolated cells in microcultures. Science, 1965,150:889-892.
doi: 10.1126/science.150.3698.889
[9] Hoekema A, Hirsch P R, Hooykaas P J J, Schilperoot R A, . A binary plant vector strategy based on separation of vir- and T-region of the agrobacterium tumefaciens Ti-plasmid. Nature, 1983,303:179-180.
doi: 10.1038/303179a0
[10] Sierro N, Battey J N, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch M C, Ivanov N V . Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol, 2013,14:R60.
doi: 10.1186/gb-2013-14-6-r60
[11] Sierro N, Battey J N, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch M C, Ivanov N V . The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun, 2014,5:1-9.
[12] Edwards K D, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A D, Bombarely A, Allen F, Hurst R, White B, Kernodle S P, Bromley J R, Sanchez-Tamburrino J P, Lewis R S, Mueller L A . A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 2017,18:448.
doi: 10.1186/s12864-017-3791-6
[13] Chen M, Presting G, Barbazuk W B, Goicoechea J L, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman M A, Tomkins J P, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh N K, Tyagi A K, Soderlund C, Dean R A, Wing R A . An integrated physical and genetic map of the rice genome. Plant Cell, 2002,14:537-545.
doi: 10.1105/tpc.010485
[14] Mueller L A, Tanksley S D, Giovannoni J J, van Eck J, Stack S, Choi D, Kim B D, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh N K, Stiekema W, Lindhout P, Jesse T, Lankhorst R K, Bouzayen M, Shibata D, Tabata S, Granell A, Botella M A, Giuliano G, Frusciante L, Causse M, Zamir D . The tomato sequencing project, the first cornerstone of the international solanaceae project (SOL). Comp Funct Genomics, 2005,6:153-158.
doi: 10.1002/cfg.468
[15] Luo M, Gu Y Q, You F M, Deal K R, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen C M, Zhang Y, McGuire P E, Pasternak S, Stein J C, Ware D, Kramer M, McCombie W R, Kianian S F, Martis M M, Mayer K F, Sehgal S K, Li W, Gill B S, Bevan M W, Simková H, Dolezel J, Weining S, Lazo G R, Anderson O D, Dvorak J . A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA, 2013,110:7940-7945.
doi: 10.1073/pnas.1219082110
[16] Edwards D, Batley J, Snowdon R J . Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet, 2013,126:1-11.
doi: 10.1007/s00122-012-1964-x
[17] Wang X, Liu Q, Wang H, Luo C X, Wang G, Luo M . A BAC based physical map and genome survey of the rice false smut fungus Villosiclava virens. BMC Genomics, 2013,14:883.
doi: 10.1186/1471-2164-14-883
[18] Spirhanzlova P, Dhorne-Pollet S, Fellah J S, Da Silva C, Tlapakova T, Labadie K, Weissenbach J, Poulain J, Jaffredo T, Wincker P, Krylov V, Pollet N . Construction and characterization of a BAC library for functional genomics in Xenopus tropicalis. Dev Biol, 2017,426:255-260.
doi: 10.1016/j.ydbio.2016.05.015
[19] Liu Y, Zhang B, Wen X, Zhang S, Wei Y, Lu Q, Liu Z, Wang K, Liu F, Peng R . Construction and characterization of a bacterial artificial chromosome library for Gossypium mustelinum. PLoS One, 2018,13:e0196847.
doi: 10.1371/journal.pone.0196847
[20] Zhang J, Chen L L, Xing F, Kudrna D A, Yao W, Copetti D, Mu T, Li W, Song J M, Xie W, Lee S, Talag J, Shao L, An Y, Zhang C L, Ouyang Y, Sun S, Jiao W B, Lv F, Du B, Luo M, Maldonado C E, Goicoechea J L, Xiong L, Wu C, Xing Y, Zhou D X, Yu S, Zhao Y, Wang G, Yu Y, Luo Y, Zhou Z W, Hurtado B E, Danowitz A, Wing R A, Zhang Q . Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Natl Acad Sci USA, 2016,113:E5163-E5171.
doi: 10.1073/pnas.1611012113
[21] Ammiraju J S, Luo M, Goicoechea J L, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros N B, Blackmon B, Fang E, Tomkins J B, Brar D, MacKill D, McCouch S, Kurata N, Lambert G, Galbraith D W, Arumuganathan K, Rao K, Walling J G, Gill N, Yu Y, SanMiguel P, Soderlund C, Jackson S, Wing R A . The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res, 2006,16:140-147.
doi: 10.1101/gr.3766306
[22] Janda J, Safár J, Kubaláková M, Bartos J, Kovárová P, Suchánková P, Pateyron S, Cíhalíková J, Sourdille P, Simková H, Faivre-Rampant P, Hribová E, Bernard M, Lukaszewski A, Dolezel J, Chalhoub B . Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant J, 2006,47:977-986.
doi: 10.1111/tpj.2006.47.issue-6
[23] Wang C, Shi X, Liu L, Li H, Ammiraju J S, Kudrna D A, Xiong W, Wang H, Dai Z, Zheng Y, Lai J, Jin W, Messing J, Bennetzen J L, Wing R A, Luo M . Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives. Genetics, 2013,195:723-737.
doi: 10.1534/genetics.113.157115
[24] Wu C, Nimmakayala P, Santos F, Springman R, Scheuring C, Meksem K, Lightfoot D, Zhang H . Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor Appl Genet, 2004,109:1041-1050.
doi: 10.1007/s00122-004-1712-y
[25] Frary A, Hamilton C M . Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res, 2001,10:121-132.
doi: 10.1023/A:1008924726270
[26] Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, Pieter D, Wu C, Andreas G, Peter L, Nils S . BAC library resources for map-based cloning and physical map construction in barley ( Hordeum vulgare L.) . BMC Genomics, 2011,12:247.
doi: 10.1186/1471-2164-12-247
[27] Woo S S, Jiang J, Gill B S, Paterson A H, Wing R A . Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res, 1994,22:4922-4931.
doi: 10.1093/nar/22.23.4922
[28] Allouis S, Qi X, Lindup S, Gale M, Devos K . Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet, 2001,102:1200-1205.
doi: 10.1007/s001220100559
[29] 高晓明, 陈艳玲, 刘贯山, 李凤霞, 王卫峰, 任媛媛, 孙玉合 . 绒毛状烟草BAC文库的构建. 中国烟草科学, 2012,33(3):68-71.
Gao X M, Chen Y L, Liu G S, Li F X, Wang W F, Ren Y Y, Sun Y H . BAC library construction of villi tobacco ( Nicotiana tomentosiforis). Chin Tob Sci, 2012,33(3):68-71 (in Chinese with English abstract).
[30] Sierro N, van Oeveren J, van Eijk M J, Martin F, Stormo K E, Peitsch M C, Ivanov N V . Whole genome profiling physical map and ancestral annotation of tobacco Hicks Broadleaf. Plant J, 2013,75:880-889.
doi: 10.1111/tpj.12247
[31] Nagaki K, Shibata F, Suzuki G, Kanatani A, Ozaki S, Hironaka A, Kashihara K, Murata M . Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chrom Res, 2011,19:591-605.
doi: 10.1007/s10577-011-9219-2
[32] 李永平, 王颖宽, 马文广, 谭彩兰 . 烤烟新品种云烟87的选育及特征特性. 中国烟草科学, 2001,22(4):38-42.
Li Y P, Wang Y K, Ma W G, Tan C L . Breeding and selecting of a new flue-cured tobacco variety Yunyan 87 and its characteristics. Chin Tob Sci, 2001,22(4):38-42 (in Chinese with English abstract).
[33] 谭彩兰, 李永平, 王颖宽, 马文广, 雷永和 . 烤烟新品种云烟85的选育及其特征特性. 中国烟草科学, 1997,18(1):7-10.
Tan C L, Li Y P, Wang Y K, Ma W G, Lei Y H . Breeding and selecting a new flue-cured tobacco of Yunyan 85 and its characteristics. Chin Tob Sci, 1997,18(1):7-10 (in Chinese with English abstract).
[34] 李永平, 肖炳光, 焦芳婵, 张谊寒, 于海芹, 卢秀萍 . 烤烟新品种云烟97的选育及其特征特性. 中国烟草科学, 2012,33(4):28-31.
Li Y P, Xiao B G, Jiao F C, Zhang Y H, Yu H Q, Lu X P . Breeding and characteristics of a new flue-cured tobacco variety Yunyan 97. Chin Tob Sci, 2012,33(4):28-31 (in Chinese with English abstract).
[35] Lucas G B . Diseases of tobacco. Quarterly Rev Biol, 1965,4548:1421.
[36] 朱贤朝, 王彦亭, 王智发 . 中国烟草病害. 北京: 中国农业出版社, 2002. pp 21-22.
Zhu X C, Wang Y T, Wang Z F. Tobacco Diseases of China. Beijing: China Agriculture Press, 2002. pp 21-22(in Chinese).
[37] Chaplin J F . Transfer of black shank resistance from Nicotiana plumbaginifolia to flue-cured N. tabacum. Tob Sci, 1962,6:184-189.
[38] Valleau W D, Stokes G W, Johnson E M . Nine years’ experience with the Nicotiana longiflora factor for resistance to Phytophthora parasitica var. nicotianae in the control of black shank. Tob Sci, 1960,4:92-94.
[39] Sullivan M J, Melton T A, Shew H D . Managing the race structure of Phytophthora parasitica var. nicotianae with cultivar rotation. Plant Dis, 2005,89:1285-1294.
doi: 10.1094/PD-89-1285
[40] Drake K E, Lewis R S . An introgressed Nicotiana rustica genomic region confers resistance to Phytophthora nicotianae in cultivated tobacco. Crop Sci, 2013,53:1366-1374.
doi: 10.2135/cropsci2012.10.0605
[41] Zeng J M, Nifong J, Liu Y, Huang C J, Fang D H, Lewis R S, Li Y P . Evaluating diverse systems of tobacco genetic resistance to Phytophthora nicotianae in Yunnan, China. Plant Pathol, 2019,68, 1616-1623.
doi: 10.1111/ppa.v68.9
[42] Drake K E, Moore J M, Bertrand P, Fortnum B, Peterson P, Lewis R S . Black shank resistance and agronomic performance of flue-cured tobacco lines and hybrids carrying the introgressed region Wz. Crop Sci, 2015,55:1-8.
doi: 10.2135/cropsci2014.03.0249
[43] Shi X, Zeng H, Xue Y, Luo M . A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange. Plant Methods, 2011,7:33.
doi: 10.1186/1746-4811-7-33
[44] Luo M, Wang Y H, Frisch D, Joobeur T, Wing R A, Dean R A . Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium Wilt (Fom-2). Genome, 2001,44:154-162.
doi: 10.1139/g00-117
[45] Luo M, Wing R A . An improved method for plant BAC library construction. Methods Mol Biol, 2003,236:3.
[46] 刘家栋, 王革娇, 罗美中 . 阿维链霉菌BAC文库的构建及分析. 华中农业大学学报, 2016,35(5):45-50.
Liu J D, Wang G J, Luo M Z . Construction and analysis of a BAC library of Streptomyces avermitilis genome. J Huazhong Agric Univ, 2016,35(5):45-50 (in Chinese with English abstract).
[47] Thorsen J, Zhu B, Frengen E, Osoegawa K, de Jong P J, Koop B F, Davidson W S, Høyheim B . A highly redundant BAC library of Atlantic salmon ( Salmo salar): an important tool for salmon projects. BMC Genomics, 2005,6:50.
doi: 10.1186/1471-2164-6-50
[48] Kim U J, Birren B W, Slepak T, Mancino V, Boysen C, Kang H L, Simon M I, Shizuya H . Construction and characterization of a human bacterial artificial chromosome library. Genomics, 1996,34:213-218.
doi: 10.1006/geno.1996.0268
[49] Osoegawa K, Woon P Y, Zhao B, Frengen E, Tateno M, Catanese J J, de Jong P J . An improved approach for construction of bacterial artificial chromosome libraries. Genomics, 1998,52:1-8.
doi: 10.1006/geno.1998.5423
[50] 刘庆丽, 王晓明, 王革娇, 罗朝喜, 谭新球, 罗美中 . 稻曲病菌UV-2 菌株细菌人工染色体文库构建及分析. 微生物学通报, 2013,40:1715-1722.
Liu Q L, Wang X M, Wang G J, Luo C X, Tan X Q, Luo M Z . Construction of a bacterial artificial chromosome library of Villosiclava virens UV-2 genome. Microbiol China, 2013,40:1715-1722 (in Chinese with English abstract).
[51] Asakawa S, Abe I, Kudoh Y, Kishi N, Wang Y, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N . Human BAC library: construction and rapid screening. Gene, 1997,191:69-79.
doi: 10.1016/S0378-1119(97)00044-9
[52] Lewis R S, Kernodle S P . A method for accelerated trait conversion in plant breeding. Theor Appl Genet, 2009,118:1499-1508.
doi: 10.1007/s00122-009-0998-1
[53] Noguchi S, Tajima T, Yamamoto Y, Ohno T, Kubo T . Deletion of a large genomic segment in tobacco varieties that are resistant to potato virus Y (PVY). Mol Gen Genet, 1999,262:822-829.
doi: 10.1007/s004380051146
[54] Liu Y, Zeng J, Yuan C, Guo Y, Yu H, Li Y, Huang C . Cas9-PF, an early flowering and visual selection marker system, enhances the frequency of editing event occurrence and expedites the isolation of genome-edited and transgene-free plants. Plant Biotechnol J, 2019,17:1191-1193.
doi: 10.1111/pbi.2019.17.issue-7
[55] Richter A S, Banse C, Grimm B . The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife, 2019,8:e46300.
doi: 10.7554/eLife.46300
[1] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[2] LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265.
[3] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[4] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[5] HUO Qiang,YANG Hong,CHEN Zhi-You,JIAN Hong-Ju,QU Cun-Min,LU Kun,LI Jia-Na. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 214-227.
[6] Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation [J]. Acta Agronomica Sinica, 2019, 45(3): 411-418.
[7] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[8] Cheng-Jiang LI,Da-Fei LI,Gui-Su ZHOU,Long XU,Tian-Yang XU,Zheng-Xiong ZHAO. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 289-296.
[9] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[10] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[11] Jian-Wei WANG,Xiao-Lan HE,Wen-Xu LI,Xin-Hong CHEN. Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives [J]. Acta Agronomica Sinica, 2018, 44(6): 814-823.
[12] ZHONG Si-Rong,CHEN Ren-Xiao,TAO Yao,GONG Si-Yu,HE Kuan-Xin,ZHANG Qi-Ming,ZHANG Shi-Chuan,LIU Qi-Yuan. Screening of Tobacco Genotypes with Tolerance to Low-Nitrogen and Analysis of Their Nitrogen Efficiency [J]. Acta Agron Sin, 2017, 43(07): 993-1002.
[13] SHEN Jie,CAI Yan,HE Yu-Ting,LI Qi-Quan,DU Xuan-Yan,WANG Chang-Quan,LUO Ding-Qi. Dynamic Simulation of Dry Matter Accumulation in Flue-cured Tobacco and Analysis of Its Characteristics Based on Normalized Method [J]. Acta Agron Sin, 2017, 43(03): 442-453.
[14] ZHAO Pei,TENG Li-Jie,WANG Ke,DU Li-Pu,REN Xian,SHE Mao-Yun,YE Xing-Guo. Cloning, Molecular Characterization, and Functional Analysis of Wheat TaVIP1 Genes [J]. Acta Agron Sin, 2017, 43(02): 201-209.
[15] YAO Xin-Zhuan,LIU Yang,ZHAO De-Gang. Cloning of Na+ Transporter Protein SbSKC1 Gene from Sorghum and Identification of Its Salt-resistant Function in Tobacco [J]. Acta Agron Sin, 2017, 43(02): 190-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!