Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (1): 71-79.doi: 10.3724/SP.J.1006.2021.02025

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and gene localization of a novel rice brittle culm mutant bc17

JIANG Hong-Rui1,2(), YE Ya-Feng1, HE Dan1, REN Yan1, YANG Yang1, XIE Jian1, CHENG Wei-Min1, TAO Liang-Zhi1, ZHOU Li-Bin3, WU Yue-Jin1, LIU Bin-Mei1,*()   

  1. 1Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
    2University of Science and Technology of China, Hefei 230026, Anhui, China
    3Institute of Modern Physics,Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
  • Received:2020-04-03 Accepted:2020-09-13 Online:2021-01-12 Published:2020-09-29
  • Contact: LIU Bin-Mei E-mail:j602910520@163.com;liubm@ipp.ac.cn
  • Supported by:
    Anhui Science and Technology Major Project(18030701205);Anhui Key Research and Development Program(201904c03020007);National Natural Science Foundation of China(31701330);National Natural Science Foundation of China(31601828);Science and Technology Service Network Program of Chinese Academy of Sciences Project (STS Program);Science and Technology Service Network Program of Chinese Academy of Sciences Project(KFJ-STS-ZDTP-054)

Abstract:

A brim culm mutant bc17 (brittle culm 17) was obtained by irradiating wyj7 (Wuyunjing 7) with heavy ions. The brittle traits of the mutant were only found in the stalks and not in the leaves. The brittleness of the culm began to appear after heading stage, while it became more obvious as rice grew from heading stage to maturity stage. The growth and development of the mutant were affected, the plant height of the mutant was significantly lower than that in the wild type, and tiller number and seed setting rate were also lower than in the wild type. Compared with wild type, the cellulose content in bc17 culms and leaves decreased by 22.7% and 18.67%, while the hemicellulose content increased by 45.76% and 31.36%, respectively. The breaking resistance and tensile force of bc17 were significantly lower than those of wild type, indicating that the mechanical strength of the culm changed. The thick-walled cells of bc17 culms had larger pores, looser structures, and fewer cells. The fragile characteristics of bc17 were controlled by a single recessive nuclear gene. The bc17 gene was located in the 162 kb region of chromosome 7 by map-based cloning. Bioinformatics analysis indicated that it might be a novel gene related to rice brittle culm. These findings provided an important material support for the research on the molecular mechanism of cell wall synthesis in rice.

Key words: rice, brittle culm mutant, cell wall, gene mapping, cellulose content

Fig. 1

Plants and broken culm phenotype of mutant type bc17 and wild type wyj7 in mature stage A: Plants of mature stage; B: An easily broken bc17 culm indicated by arrows; C: Leaves of mature stage; D: Panicle phenotype. wyj7: Wuyunjing 7; bc17: brittle culm 17."

Table 1

Agronomic traits of mutant bc17 and wild type wyj7"

性状
Trait
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
株高 Plant height (cm) 69.43±1.95** 94.6±0.80
分蘖数Tiller number per plant 9.67±0.58* 11.33±0.58
结实率 Seed fertility (%) 63.45±2.39** 87.53±4.38
千粒重 1000-grain weight (g) 23.6±0.67** 26.62±0.84
穗长 Panicle length (cm) 12.73±0.55** 15.56±0.21
每穗粒数Number of grain per panicle 111.94±12.06 128.94±9.34

Table 2

Cell wall components between wild type wyj7 and mutant type bc17 (%)"

成分
Component
茎秆Culm 叶片Leaf
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
纤维素 Cellulose 19.91±1.77* 25.77±1.36 29.19±2.16* 35.89±1.74
半纤维素 Hemicellulose 22.68±1.78* 15.56±0.63 30.03±1.17 22.86±2.40
木质素 Lignin 4.39±0.40 3.99±0.66 6.52±0.30* 4.61±0.24
灰分 Ash 4.21±0.13 4.19±0.59 6.65±0.12* 8.07±0.29

Fig. 2

Breaking force and tension force of wild type and mutant in the 2nd and 3rd internodes * and ** represent significant differences between the bc17 mutant and wild type at the 0.05 and 0.01 probability levels, respectively. wyj7: Wuyunjing 7; bc17: brittle culm 17."

Table 3

Lodging index of wild type and mutant type bc17"

参数
Parameters
野生型
Wild type (wyj7)
突变体
Mutant (bc17)
抗折力Breaking resistance (N) 6.38±0.59 3.33±0.11**
弯曲力矩Bending moment (N m) 6.31±0.34 3.75±0.34**
倒伏指数Lodging index 99.38±76.40 112.15±57.40

Fig. 3

Cross section of wild type (left) and mutant (right) in stalks"

Table 4

Genetic analysis of mutant bc17"

杂交组合
Cross
正常植株
Normal plants
脆秆株数
Number of brittle culm plants
群体总数
Total number of F2
χ2
20.05 = 3.84)
bc17/wyj7 223 78 301 0.13
bc17/9311 329 97 426 1.13

Table 5

Part of the primers for bc17 gene mapping"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
RM500 GAGCTTGCCAGAGTGGAAAG GTTACACCGAGAGCCAGCTC
RM3743 TAGCCTTGTTCCATCCATCC CTTCTCCCTCTCCTCCTTCC
UP-81 TGCATCTCATCTCCCCTCTT TGGAGTATAACGCCGACCTC
DN-25 AGGGAAAATGCGCTGAACTA ATTCATCCATGCCCTATCCA

Fig. 4

Positional mapping of bc17 by molecular makers"

[1] 沈革志, 王新其, 王江, 宛新彬, 李琳, 张景六. 水稻脆秆突变体bcm581-1茎秆形态结构观察、理化测定和遗传分析. 实验生物学报, 2002,35:307-312.
Shen G Z, Wang X Q, Wang J, Wan X B, Li L, Zhang J L. Stem morphological structure observation, physical and chemical determination and genetic analysis of the rice brittle stem mutant bcm581-1. J Mol Cell Biol, 2002,35:307-312 (in Chinese with English abstract).
[2] Aohara T, Kotake T, Kaneko Y, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol, 2009, 11:1886-1897.
[3] Xu J D, Zhang Q F, Zhang T, Zhang H Y, Xu P Y, Wang X D, Wu X J. Phenotypic characterization, genetic analysis and gene- mapping for a brittle mutant in rice. J Integr Plant Biol, 2008,50:319-328.
doi: 10.1111/j.1744-7909.2007.00629.x pmid: 18713364
[4] 韦存虚, 谢佩松, 周卫东, 陈义芳, 严长杰. 水稻脆性突变体叶的解剖结构和化学特性. 作物学报, 2008,34:1417-1423.
doi: 10.3724/SP.J.1006.2008.01417
Wei C X, Xie P S, Zhou W D, Chen Y F, Yan C J. Anatomical structure and chemical features of leaf in brittle mutant of rice. Acta Agron Sin, 2008,34, 1417-1423 (in Chineses with English abstract).
[5] 冯永清, 邹维华, 李丰成, 张晶, 张会, 谢国生, 涂媛苑, 路铁刚, 彭良才. 特异水稻茎秆突变体生物学特性及生物质降解效率的研究. 中国农业科技导报, 2013,15(3):77-83.
Feng Y Q, Zou W H, Li F C, Zhang J, Zhang H, Xie G S, Tu Y Y, Lu T G, Peng L C. Studies on biological characterization of rice brittle culm mutants and their biomass degradation efficiency. J Agr Sci Tech China, 2013,15(3):77-83 (in Chinese with English abstract).
[6] Li Y H, Qian Q, Zhou Y H, Yan M X, Sun L, Zhang M, Fu Z M, Wang Y H, Han B, Pang X M, Chen M S, Li J Y. Brittle culm 1, which encodes a cobra-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003,9:2020-2031.
[7] Zhang B C, Zhou Y H . Rice brittleness mutants: a way to open the ‘Black Box’ of monocot cell wall biosynthesis. J Integr Plant Biol, 2011,53:136-142.
pmid: 21205179
[8] 张保才, 周奕华. 植物细胞壁形成机制的新进展. 中国科学: 生命科学, 2015,45:544-556.
Zhang B C, Zhou Y H. Plant cell wall formation and regulation. Sci China Life Sci, 2015,45:544-556 (in Chinese with English abstract).
[9] Xiong G Y, Li R, Qian Q, Song X Q, Liu X L, Yu Y C, Zeng D L, Wan J M, Li J Y, Zhou Y H. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J, 2010,64:56-70.
doi: 10.1111/j.1365-313X.2010.04308.x pmid: 20663087
[10] Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011,62:2053-2062.
doi: 10.1093/jxb/erq395 pmid: 21209026
[11] 舒亚洲, 曾冬冬, 秦冉, 金晓丽, 郑希, 石春海. 水稻脆秆突变体bc16的鉴定和基因精细定位. 中国水稻科学, 2016,30:345-355.
Shu Y Z, Zeng D D, Qin R, Jin X L, Zheng X, Shi C H. Identification and gene fine mapping of a brittle culm 16 (bc16) mutant in rice. Chin J Rice Sci, 2016,30:345-355 (in Chinese with English abstract).
[12] Katsuyuki T, Kazumasa M, Muneo Y, Katsura O, Akio M, Hirohiko H. Three distinct rice cellulose synthase catalytic subunit gnes required for cellulose synthesis in the secondary wall. Plant Physiol, 2003,133:73-83.
pmid: 12970476
[13] Yan C S, Yan S, Zeng X H, Zhang Z Q, Gu M H. Fine, mapping and isolation of Bc7(t), allelic to OsCesA4. J Genet Genomics, 2007,34:1019-1027.
doi: 10.1016/S1673-8527(07)60115-5
[14] Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D L, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009,71:509-524.
doi: 10.1007/s11103-009-9536-4
[15] Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J Exp Bot, 2011,62:2053-2062.
doi: 10.1093/jxb/erq395
[16] Song X Q, Liu L F, Jiang Y J, Zhang B C, Gao Y P, Liu X L, Lin Q S, Ling H Q, Zhou Y H. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant, 2013,6:768-780.
doi: 10.1093/mp/sst025
[17] Zhou Y H, Li S B, Qian Q, Zeng D L, Zhang M, Guo L B, Liu X L, Zhang B C, Deng L W, Liu X F. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice. Plant J, 2009,57:444-462.
[18] Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011,108:5110-5115.
pmid: 21383162
[19] Wu B, Zhang B C, Dai Y, Zhang L, Guan S K K, Peng Y G, Zhou Y H, Zhu Z. Brittle culm 15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012,159:1440-1452.
pmid: 22665444
[20] Ye Y F, Liu B M, Zhao M, Wu K, Cheng W M, Chen X B, Liu Q, Liu Z, Fu X D, Wu Y J. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Mol Biol, 2015,89:385-401.
pmid: 26350403
[21] Huang D B, Wang S G, Zhang B C, Shang G K K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell, 2015,27:1681-1696.
pmid: 26002868
[22] Ye Y F, Wu K, Chen J F, Liu Q, Wu Y J, Liu B M, Fu X D. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. Rice, 2018,11:1-14.
doi: 10.1186/s12284-017-0196-8 pmid: 29305728
[23] Zhang M, Zhang B C, Qian Q, Yu Y C, Li R, Zhang J W, Liu X L, Zeng D L, Li J Y, Zhou Y H. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J, 2010,63:312-328.
doi: 10.1111/j.1365-313X.2010.04238.x pmid: 20444225
[24] Van Soest PJ, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Daily Sci, 1991,74, 3583-3597.
[25] 章忠贵, 刘斌美, 许学, 张丽丽, 王敏, 吴跃进. 水稻株高突变系的农艺性状与抗倒伏研究. 核农学报, 2010,24:430-435.
Zhang Z G, Liu B M, Xu X, Zhang L L, Wang M, Wu Y J. Agronomic characters and lodging resistance of plant height mutants of rice. Acta Agric Nucl Sin, 2010,24:430-435 (in Chinese with English abstract).
[26] Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takasuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta, 2010,232:95-108.
doi: 10.1007/s00425-010-1145-6 pmid: 20369251
[27] 张兰军, 张保才, 周奕华. 植物细胞壁多糖乙酰化修饰与生物学功能. 植物生理学报, 2018,54:1272-1278.
Zhang L J, Zhang B C, Zhou Y H. Progress on polysaccharide acetylation in plant cell wall. J Plant Physiol, 2018,54:1272-1278 (in Chinese with English anstract).
[28] Zhang B C, Zhang L J, Li F, Zhang D M, Liu X L, Wang H, Xu Z P, Chu C C, Zhou Y H. Control of secondary cell wall patterning involves xylan deacetylatin by a GDSL esterase. Nat Plant, 2017,3:17017.
[29] 陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆茎突变体的主要性状比较研究. 杂交水稻, 2017,32(5):51-55.
Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Comparative studies of major characteristics of rice brittle culm mutants. Hybrid Rice, 2017,32(5):51-55 (in Chinese with English abstract).
[30] 陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆性突变体w7bc5的生物学特性研究. 生物学杂志, 2018,35(1):1-4.
Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Characterization of a brittle culm mutant w7bc5 in japonica rice. J Biol, 2018,35(1):1-4 (in Chinese with English abstract).
[31] 吕宗友, 苏衍菁, 赵国琦, 严长杰. 全株脆性突变体在奶牛瘤胃内降解特性的研究. 中国奶牛, 2011,18(4):7-11.
Lyu Z Y, Su Y J, Zhao G Q, Yan C J. Study on degradation characteristics of whole plant fragile mutant in rumen of dairy cow. China Dairy Cattle, 2011,18(4):7-11 (in Chinese).
[32] 王艳婷, 徐正丹, 彭良才. 植物细胞壁沟槽结构与生物质利用研究展望. 中国科学: 生命科学, 2014,44:766-774.
Wang Y T, Xu Z D, Peng L C. Research progress in the groove structures of plant cell walls and biomass utilizations. Sci China Life Sci, 2014,44:766-774 (in Chinese with English abstract).
[33] 黄成, 李来庚. 植物细胞壁研究与生物质改造利用. 中国科学: 生命科学, 2016,61:3623-3629.
Huang C, Li L G. Understanding of plant cell wall biosynthesis for utilization of lignocellulosic biomass resources. Sci China: Life Sci, 2016,61:3623-3629 (in Chinese with English abstract).
[34] 黄峰, 王永泽, 周胜德, 赵锦芳, 赵筱, 王金华. 水稻脆性秸秆发酵产纤维乙醇的研究. 可再生能源, 2014,32:211-215.
Huang F, Wang Y Z, Zhou S D, Zhao J F, Zhao X, Wang J H. Study on cellulosic ethanol fermentation of brittle rice straw. Renew Energ, 2014,32:211-215 (in Chinese with English abstract).
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!