Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 305-319.doi: 10.3724/SP.J.1006.2021.04112

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Anatomy characteristics and IbEXP1 gene expression of tuberization under ammonia nitrogen treatment in sweet potato

WANG Cui-Juan1(), CHAI Sha-Sha2(), SHI Chun-Yu3,*(), ZHU Hong4, TAN Zhong-Peng3, JI Jie3, REN Guo-Bo5   

  1. 1Institute of Sweet Potato, Yantai Academy of Agricultural Sciences, Yantai 265500, Shandong, China
    2Institute of Food Crops, Hubei Academy of Agricultural Sciences / Hubei Engineering and Technology Research Center of Sweetpotato / Hubei Key Laboratory of Food Crop Germplasms and Genetic Improvement, Wuhan 430064, Hubei, China
    3Resources of Horticulture Science and Engineering, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    4Crop Protection Institute, Shandong Agricultural University, Tai’an 271018, Shandong, China
    5Luxi Chemical Group Co. Ltd., Liaocheng 252000, Shandong, China
  • Received:2020-05-21 Accepted:2020-08-19 Online:2021-02-12 Published:2020-09-08
  • Contact: SHI Chun-Yu E-mail:cuijuanwangwang@126.com;chaishasha2008@126.com;scyu@sdau.edu.cn
  • Supported by:
    Shandong Agriculture Innovation Team (SDAIT-16-01).

Abstract:

This study chose Shangshu 19 (S19) and Jixu 23 (J23) categorized by valid tuber root number per plant as analyzing varieties and arranged treatment combinations consisted of two nitrogen forms ammonium nitrogen (AN) and amide nitrogen (XN) integrated with two nitrogen rates 60 kg hm-2 (LN60) and 180 kg hm-2 (HN180), using field and pot trial assays, plus a check treatment received no nitrogen supply in order to make research on the anatomical observation on sweet potato tuber root differentiation and expression characteristics of IbEXP1 gene associated with tuber root formation in ammonia nitrogen in 2014 and 2015. Our results showed that the storage root yield of Shangshu 19 associated with more valid tuber root number per plant was significantly higher than Jixu 23 at harvest stage, which was significant difference compared with each other. In addition, nitrogen levels and nitrogen forms had significant interaction effects. The 60 kg hm-2 ammonium nitrogen treatment in two sweet potato genotypes achieved the highest final storage root yield in field experiment and showed higher valid tuber root number per plant, which attributed to the younger tubers whose root diameter between 0.5 cm and 5.0 cm during the canopy closure period. It had been observed that 60 kg hm-2 ammonium nitrogen treatment possessed the most vessels in the primary xylem bundle and the lignified parenchyma cells of the stele tissues in the pre-cambial period, followed with possessing high level expression of IbEXP1 gene, the biggest root diameter and stele diameter and the most number of primary and secondary xylem bundles in the course of primary cambium growth. As the vascular cambium was initiated, relative expression of IbEXP1 gene at 60 kg hm-2ammonium nitrogen treatment and the degree of parenchyma cells lignification were intermediate between no nitrogen application and high nitrogen treatments, however, the diameter of root and stele and the ratio of them were highest, which achieved the perfect harmony in lignification and division of parenchyma cells in tuberization.

Key words: sweet potato, ammonium nitrogen, tuberization, anatomical observation, IbEXP1 gene

Table 1

Fresh yield of storage root and yield traits in field trials at harvest time (in the field, from 2014 to 2015)"

品种
Variety
处理
Treatment
块根产量
FYSR (kg hm-2)
单株有效薯块数
VSRNP (plant-1)
平均单薯鲜重
AFWP (g)
商薯19
S19
N0 40,461.31 b 4.82 b 168.29 d
AN60 43,567.71 a 5.24 a 166.62 d
XN60 39,218.75 c 3.82 c 205.46 b
AN180 37,667.41 d 3.89 c 194.89 c
XN180 35,982.15 e 3.20 d 227.45 a
济徐23
J23
N0 35,953.13 b 2.96 b 247.16 c
AN60 38,127.61 a 3.95 a 198.25 e
XN60 33,306.37 c 2.62 c 262.35 b
AN180 33,391.93 c 3.20 b 209.66 d
XN180 32,578.13 d 2.38 d 272.92 a

Table 2

Partial correlated coefficients among yield traits in field trials at harvest time (F-value, 2014-2015)"

变异来源
Source of variation
块根产量
Yield (kg hm-2)
单株有效薯块数
Valid storage root number per plant
V 34.56* 230.33**
A 30.69** 24.65**
F 16.48** 66.99**
A×F 5.79** 19.91**

Table 3

Valid storage roots number, valid storage root fresh weight per plant and its compositional features during the canopy closure period in pot trials from 2014 to 2015"

品种
Variety
处理
Treatment
薯块鲜重
VSRFWP
(g plant-1)
薯块数
VSRNP
(per plant)
YSR (cm) DSR (cm) MSR (cm)
0.5 ≤ Φ < 1.0 1.0 ≤ Φ < 5.0 Φ ≥ 5.0
商薯19
S19
N0 79.15 b 6.19 b 2.00 cd 2.67 b 1.50 a
AN60 85.97 a 7.17 a 3.00 a 4.00 a 0.34 d
XN60 78.34 b 4.50 c 2.17 c 1.67 c 0.67 b
AN180 77.44 b 4.84 c 2.67 b 1.67 c 0.50 c
XN180 65.01 c 3.34 d 1.67 d 1.05 d 0.67 b
济徐23
J23
N0 87.41 b 4.00 b 0.67 1.00 c 2.34 a
AN60 96.71 a 5.25 a 1.50 a 2.50 a 1.25 c
XN60 87.79 b 3.17 c 0.84 1.17 bc 1.67 b
AN180 70.59 c 3.00 cd 0.50 1.33 b 1.17 c
XN180 70.30 c 2.67 d 0.75 1.34 b 0.67 d

Fig. 1

Histological observation of conventional paraffin sections of adventitious root on the seventh day after planting stained by safranine and fast green, phloroglucinol and periodic acid-Schiff in 2015 SF: safranine and fast green; Ph: phloroglucinol; PAS: periodic acid-Schiff; Px: primary xylem; PPh: primary phloem."

Fig. 2

Histological observation of conventional paraffin sections of adventitious root on the seventh day after planting stained by safranine and fast green, phloroglucinol and periodic acid-Schiff in 2015 Abbreviations are the same as those given in Fig. 1."

Table 4

Quantitative indices of young root internal structure in different treatments on the seventh day after planting in 2015"

品种
Variety
处理
Treatment
根直径
RD
(mm)
中柱直径
SD
(mm)
原生木质部
数目
PSN
原生木质部
导管数目
PXCN
木质化薄壁
细胞数目
LPCN
中柱占
横截面比例
RSCS (%)
商薯19
S19
N0 0.92 a 0.34 a 5.00 a 27.00 b 3.00 c 11.95 b
AN60 1.00 a 0.38 a 5.33 a 83.00 a 37.00 a 14.62 a
XN60 0.91 a 0.33 a 5.00 a 70.00 a 23.00 b 13.37 a
AN180 0.77 b 0.29 b 5.00 a 38.00 b 18.00 b 14.61 a
XN180 0.79 b 0.27 b 5.00 a 37.00 b 15.00 b 13.47 a
济徐23
J23
N0 0.94 a 0.31 b 6.00 a 41.00 b 3.00 c 11.11 c
AN60 1.09 a 0.42 a 6.00 a 70.00 a 28.00 a 15.01 a
XN60 0.98 a 0.37 b 6.33 a 62.00 a 24.00 a 14.44 a
AN180 0.95 a 0.35 b 6.00 a 42.00 b 9.00 c 13.77 ab
XN180 0.93 a 0.35 b 6.00 a 32.00 c 18.00 b 14.36 a

Fig. 3

Histological observation of conventional paraffin sections of adventitious root on the 14th day after planting stained by safranine and fast green, phloroglucinol and periodic acid-Schiff in 2015 Sx: secondary xylem; LPCS: lignified parenchyma cell in stele; Vc: vascular cambium."

Fig. 4

Histological observation of conventional paraffin sections of adventitious root on the 14th day after planting stained by safranine and fast green, phloroglucinol and periodic acid-Schiff in 2015 Abbreviations are the same as those given in Fig. 3."

Table 5

Quantitative indices of young root internal structure in different treatments on the 14th day after planting"

品种
Variety
处理
Treatment
根直径
RD (mm)
中柱直径
SD (mm)
原生木质部束数目
PSN
次生木质部束数目
SXN
木质化薄壁细胞数目
LPCN
中柱占横截面比例
RSCS (%)
商薯19
S19
N0 1.22 a 0.88 b 5.00 b 8.00 c 29.00 d 40.96 b
AN60 1.24 a 0.96 a 6.33 a 14.00 a 71.00 c 47.61 a
XN60 1.10 b 0.69 c 6.00 a 10.00 b 68.00 c 47.61 a
AN180 1.14 b 0.74 c 5.00 b 10.00 b 83.00 b 42.19 b
XN180 1.17 b 0.70 c 5.00 b 6.00 c 126.00 a 40.96 b
济徐23
J23
N0 1.42 ab 0.85 a 7.00 a 9.00 b 19.00 d 33.64 a
AN60 1.53 a 0.85 a 8.00 a 13.00 a 61.00 c 27.04 a
XN60 1.30 b 0.69 b 7.00 a 11.00 ab 59.00 c 28.09 a
AN180 1.48 a 0.85 a 6.00 b 11.00 ab 110.00 a 33.64 a
XN180 1.21 c 0.54 c 6.33 b 10.00 b 91.00 b 20.25 b

Fig. 5

Histological observation of conventional paraffin sections of adventitious root on the 21th day after planting stained by safranine and fast green, phloroglucinol and periodic acid-Schiff in 2015 A: amyloplast; Msv: meristem."

Fig. 6

Histological observation of conventional paraffin sections of adventitious root on the 21th day after planting stained by safranine and fast green, phloroglucinol and periodic acid-Schiff in 2015 Abbreviations are the same as those given in Fig. 5."

Table 6

Quantitative indices of young root internal structure in different treatments on the 21th day after planting in 2015"

品种
Variety
处理
Treatment
根直径
RD (mm)
中柱直径
SD (mm)
次生维管束数目
SCN
木质化薄壁细胞数目
LPCN
中柱占横截面比例
RSCS (%)
商薯19
S19
N0 1.85 c 1.02 c 10.00 c 45.00 d 15.00 c
AN60 2.56 a 1.46 a 20.00 a 64.00 c 32.00 a
XN60 2.10 b 1.20 b 15.00 b 87.00 b 23.00 b
AN180 2.17 b 1.22 b 16.00 ab 79.00 b 18.00 c
XN180 1.71 c 0.91 c 16.00 ab 102.00 a 30.00 a
济徐23
J23
N0 2.01 c 1.13 c 11.00 b 30.00 b 18.00 b
AN60 3.39 a 2.07 a 18.00 a 39.00 a 28.00 a
XN60 2.56 b 1.55 b 21.00 a 30.00 b 24.00 ab
AN180 2.22 b 1.41 b 17.00 a 31.00 b 16.00 b
XN180 2.14 c 1.10 c 14.00 b 40.00 a 30.00 a

Fig. 7

Expression level of IbEXP1 gene in root tuberization of sweet potato by qRT-PCR in 2015 Bars superscripted by different letters in each column are significantly different at the 0.05 probability level. DAP: days after planting. Treatments and abbreviations are the same as those given in Table 1 and Table 4, respectively."

[1] 张鹏, 许智宏. 加强薯类基础研究,推动农业产业稳定发展. 植物生理学报, 2017,53:747-748.
Zhang P, Xu Z H. Intensifying basic research on root and tuber crops for sustainable agro-industrial development. Plant Physiol J, 2017,53:747-748 (in Chinese).
[2] 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. p 211.
Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. p 211 (in Chinese).
[3] 周全卢. 秋甘薯不同类型品种干物质积累特性研究. 西南大学硕士学位论文, 重庆, 2007.
Zhou Q L. Research of Dry Matter Accumulating Characters on Autumn Sweet Potato Varieties of Different Types. MS Thesis of Southwest University, Chongqing, China, 2007 (in Chinese with English abstract).
[4] 王翠娟, 史春余, 王振振, 柴沙沙, 史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响, 作物学报, 2014,40:1677-1685.
Wang C J, Shi C Y, Wang Z Z, Chai S S, Shi Y X. Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agron Sin, 2014,40:1677-1685 (in Chinese with English abstract).
[5] Nakamura K, Ohto M A, Yoshida N, Nakamura K. Sucrose-induced accumulation of b-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol, 1991,96:902-909.
doi: 10.1104/pp.96.3.902 pmid: 16668273
[6] 安建刚, 敬夫, 丁祎, 肖怡, 尚浩浩, 李宏利, 杨晓璐, 唐道彬, 王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响. 作物学报, 2018,44:1858-1866.
An J G, Jing F, Ding W, Xiao Y, Shang H H, Li H L, Yang X L, Tang D B, Wang J C. Effects of split application of nitrogen fertilizer on yield, quality and nitrogen use efficiency of sweet potato. Aata Agron Sin, 2018,44:1858-1866 (in Chinese with English abstract).
[7] Phillips S B, Warren J G, Mullins G L. Nitrogen rate and application timing affect Beauregard sweetpotato yield and quality. Hortic Sci, 2005,40:214-217.
[8] Villordon A, LaBonte D, Solis J. Characterization of Lateral root development at the onset of storage root initiation in ‘Beauregard’ sweet potato adventitious roots. Hortic Sci, 2012,47:961-968.
[9] Togari Y. A study of tuberous root formation in sweet potato. Bull Nat Agric Exp Stn Tokyo, 1950,68:1-96 (in Japanese with English abstract).
[10] Wilson L A, Lowe S B. The anatomy of the root system in West Indian sweet potato (Ipomoea batatas (L.) Lam.) cultivars. Ann Bot, 1973,37:633-643.
[11] Gifford M L, Dean A, Gutierrez R A, Coruzzi G M, Birnbaum K D. Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA, 2008,105:803-808.
pmid: 18180456
[12] Ukom A N, Ojimelukwe P C, Okpara D A. Nlutrient composition of selected sweet potato varieties as influenced by different levels of nitrogen fertilizer applicaiton. Pakistan J Nutr, 2009,8:1791-1795.
[13] 陈晓光, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛, 史春余. 不同氮水平下多效唑对食用型甘薯光合和淀粉积累的影响. 作物学报, 2012,38:1728-1733.
Chen X G, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M, Shi C Y. Effect of paclobutrazol under different N-application rates on photosynthesis and starch accumulation in edible sweet potato. Acta Agron Sin, 2012,38:1728-1733 (in Chinese with English abstract).
[14] 史春余, 张晓冬, 张超, 陈晓光. 甘薯对不同形态氮素的吸收与利用. 植物营养与肥料学报, 2010,16:389-394.
Shi C Y, Zhang X D, Zhang C, Chen X G. Absorption and utilization of different nitrogen forms for sweet potato. Plant Nutr Fert Sci, 2010,16:389-394 (in Chinese with English abstract).
[15] 李勇, 周毅, 郭世伟, 沈其荣. 铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响. 中国水稻科学, 2007,21:294-298.
Li Y, Zhou Y, Guo S W, Shen Q R. Effects of different N forms on root morphology and water absorption of low land and upland rice plants. Chin J Rice Sci, 2007,21:294-298 (in Chinese with English abstract).
[16] Lima J E, Kojima S, Takahashi H. Ammonium triggers lateral root branching in Arabidopsis in an ammonium transporter1, 3-dependent manner. Plant Cell, 2010,22:3621-3633.
pmid: 21119058
[17] Camberato J J, Bock B R. Spring wheat response to enhanced ammonium supply: I. Dry matter and nitrogen content. Agron J, 1990,82:463-467.
[18] Tanaka M, Kato N, Nakayama H. Expression of class 1Knotted1-like homeobox genes in the storage roots of sweet potato (Ipomoea batatas). J Plant Physiol, 2008,165:1726-1735.
doi: 10.1016/j.jplph.2007.11.009 pmid: 18242774
[19] Noh S A, Lee H S, Kim Y S. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013,64:129-142.
pmid: 22945944
[20] 叶宝兴, 毕建杰, 孙印石. 植物细胞与组织研究方法. 北京: 化学工业出版社, 2011. pp 49-57.
Ye B X, Bi J J, Sun Y S. Research Methods of Plant Cells and Tissues. Beijing: Chemical Industry Press, 2011. pp 49-57(in Chinese).
[21] 刘德高. 过表达IbP5CR、IbERD3、IbELT、IbNFU1基因的甘薯植株的获得及耐盐性鉴定. 中国农业大学博士学位论文, 北京, 2014.
Liu D G. Production and Salt Tolerance Evaluation of Sweetpotato (Ipomoea batatas (L.) Lam.) Plants Overexpressing IbP5CR, IbERD3, IbELT or IbNFU1 Gene PhD Dissertation of China Agricultural University, Beijing, 2014 (in Chinese with English abstract).
[22] 杨元军, 王玉萍, 翟红, 刘庆昌. 甘薯块根总RNA的高效快速提取方法. 分子植物育种, 2008,6:193-196.
Yang Y J, Wang Y P, Zhai H, Liu Q C. A simple and rapid procedure for RNA isolation from storage roots of sweetpotato (Ipomoea batatas). Mol Plant Breed, 2008,6:193-196 (in Chinese with English abstract).
[23] Ravi V, Indira P. Crop physiology of sweet potato. Hortic Rev, 1999,23:277-339.
[24] Belehu T, Hammes P S, Robbertse P J. The origin and structure of adventitious roots in sweet potato (Ipomoea batatas). Aust J Bot, 2004,52:551-558.
[25] 张庆会, 徐步东. 试论甘薯块根的生长机理. 生物学通报, 2002,37(8):22-23.
Zhang Q H, Xu B D. Growth mechanism of sweet potato tuber root. Bull Biol, 2002,37(8):22-23 (in Chinese with English abstract).
[26] Xie F L, Burklew C E, Yang Y F, Liu M, Xiao P, Zhang B H, Qiu D. De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta, 2012,236:101-113.
pmid: 22270559
[27] Tao X, Gu Y H, Wang H Y, Zheng W, Li X, Zhao C W, Zhang Y Z. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One, 2012,7:e36234.
doi: 10.1371/journal.pone.0036234 pmid: 22558397
[28] Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Nadir L A. Transcriptional profiling of sweet potato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 2013,14:460.
doi: 10.1186/1471-2164-14-460 pmid: 23834507
[29] Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell, 2002,14:3237-3253.
doi: 10.1105/tpc.006437 pmid: 12468740
[30] Noh S A, Lee H S, Huh E J. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweet potato. Exp Bot, 2010,61:1337-1349.
[31] Noh S A, Lee H S, Kim Y S. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013,64:129-142.
doi: 10.1093/jxb/ers236 pmid: 22945944
[32] Bae J M, Kwak M S, Noh S A, Oh M J, Kim Y S, Shin J S. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res, 2014,23:657-667.
doi: 10.1007/s11248-014-9804-1
[1] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[2] Yong-Chen LIU,Cheng-Cheng SI,Hong-Juan LIU,Bin-Bin ZHANG,Chun-Yu SHI. Reason exploration for soil aeration promoting photosynthate transportation between sink and source in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(3): 462-471.
[3] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[4] JIANG Zhong-Yu, TANG Li-Xue, LIU Hong-Juan, SHI Chun-Yu. Changes of endogenous hormones on storage root formation and its relationship with storage root number under different potassium application rates of sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1750-1759.
[5] ZHANG Hai-Yan, WANG Bao-Qing, FENG Xiang-Yang, LI Guang-Liang, XIE Bei-Tao, DONG Shun-Xu, DUAN Wen-Xue, ZHANG Li-Ming. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.] [J]. Acta Agronomica Sinica, 2020, 46(11): 1760-1770.
[6] Wen-Qing SHI,Bin-Bin ZHANG,Hong-Juan LIU,Qing-Xin ZHAO,Chun-Yu SHI,Xin-Jian WANG,Cheng-Cheng SI. Response mechanism of sweet potato storage root formation and bulking to soil compaction and its relationship with yield [J]. Acta Agronomica Sinica, 2019, 45(5): 755-763.
[7] Wen-Xue DUAN,Hai-Yan ZHANG,Bei-Tao XIE,Bao-Qing WANG,Li-Ming ZHANG. Identification of Salt Tolerance and Screening for Its Indicators in Sweet Potato Varieties during Seedling Stage [J]. Acta Agronomica Sinica, 2018, 44(8): 1237-1247.
[8] Jian-Gang AN,Fu JING,Yi DING,Yi XIAO,Hao-Hao SHANG,Hong-Li LI,Xiao-Lu YANG,Dao-Bin TANG,Ji-Chun WANG. Effects of Split Application of Nitrogen Fertilizer on Yield, Quality and Nitrogen Use Efficiency of Sweet Potato [J]. Acta Agronomica Sinica, 2018, 44(12): 1858-1866.
[9] Song HOU, Xia TIAN, Qing LIU. Effects of Foliage Spray of Se on Absorption Characteristics of Se and Quality of Purple Sweet Potato [J]. Acta Agronomica Sinica, 2018, 44(03): 423-430.
[10] WANG Cui-Juan,SHI Chun-Yu,LIU Na,LIU Shuang-Rong,YU Xin-Di. Comparison of Root Characteristics and Sugar Components in Root and Leaf at Early Growth Phase of Sweet Potato Varieties with Significant Difference in Valid Storage Root Number [J]. Acta Agron Sin, 2016, 42(01): 131-140.
[11] WANG Cui-Juan,SHI Chun-Yu,WANG Zhen-Zhen,CHAI Sha-Sha,LIU Hong-Juan,SHI Yan-Xi. Effects of Plastic Film Mulching Cultivation on Young Roots Growth Development, Tuber Formation and Tuber Yield of Sweet Potato [J]. Acta Agron Sin, 2014, 40(09): 1677-1685.
[12] WANG Xiao-Chun,YANG Wen-Yu,DENG Xiao-Yan,ZHANG Qun,YONG Tai-Wen,LIU Wei-Guo,YANG Feng,MAO Shu-Ming. Differences of Nitrogen Uptake and Utilization and Nitrogen Regulation Effects in Maize between Maize/Soybean and Maize/Sweet Potato Relay Intercropping Systems [J]. Acta Agron Sin, 2014, 40(03): 519-530.
[13] DENG Xiao-Yan,WANG Xiao-Chun,YANG Wen-Yu,SONG Chun,WEN Xi-Chen,ZHANG Qun,MAO Shu-Ming. Phosphorus Uptake and Utilization of Maize and Interspecies Interactions in Maize/Soybean and Maize/Sweet Potato Relay Intercropping Systems [J]. Acta Agron Sin, 2013, 39(10): 1891-1898.
[14] LI Ai-Xian, LIU Qiang-Chang, WANG Qiang-Mei, ZHANG Li-Ming, ZAI Hong, LIU Shu-Zhen. Establishment of Molecular Linkage Maps Using SRAP Markers in Sweet potato [J]. Acta Agron Sin, 2010, 36(08): 1286-1295.
[15] XIANG Su-Qiong;WANG Wei-Xing;LI Xiao-Lin;CHEN Yao;GUO Qi-Gao;HE Qiao;LIANG Guo Lu. GISH Analysis of Sweet Potato Wild Relative Ipomoea trifida (4x) [J]. Acta Agron Sin, 2008, 34(02): 341-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!