Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 672-683.doi: 10.3724/SP.J.1006.2021.04114
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
TANG Rui-Min1,2(), JIA Xiao-Yun1, ZHU Wen-Jiao2, YIN Jing-Ming2, YANG Qing2,*()
[1] | Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016,167:313-324. |
[2] | Herman D J, Knowles L O, Knowles N R. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato ( Solanum tuberosum L.). Planta, 2017,245:563-582. |
[3] | Lafta A, Lorenzen J. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol, 1995,109:637-643. |
[4] |
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K D. Complexity of the heat stress response in plants. Curr Opin Plant Biol, 2007,10:310-316.
doi: 10.1016/j.pbi.2007.04.011 pmid: 17482504 |
[5] | Scharf K D, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta, 2012,1819:104-119. |
[6] | Lyck R, Harmening U, Höhfeld I, Treuter E, Scharf K D, Nover L. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997,202:117-125. |
[7] | Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot, 2006,98:279-288. |
[8] | Nover L, Bharti K, Döring P, Mishra S K, Ganguli A, Scharf K D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 2001,6:177-189. |
[9] | Baniwal S K, Bharti K, Chan K Y, Fauth M, Ganguli A, Kotak S, Mishra S K, Nover L, Port M, Scharf K D, Tripp J, Weber C, Zielinski D, von Koskull-Döring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci, 2004,29:471-487. |
[10] |
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics, 2008,35:105-118.
pmid: 18407058 |
[11] | Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y. Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep, 2012,39:1877-1886. |
[12] | Bharti K, Koskull-Döring P V, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell, 2004,16:1521-1535. |
[13] | Swindell W R, Huebner M, Weber A P. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 2007,8:125. |
[14] | Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics, 2015,16:181. |
[15] |
Tang R M, Zhu W J, Song X Y, Lin X Z, Cai J H, Wang M, Yang Q. Genome-wide identification and function analyses of heat shock transcription factors in potato. Front Plant Sci, 2016,7:490.
pmid: 27148315 |
[16] | Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, Scharf K D. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant J, 2000,22:355-365. |
[17] | Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun, 2008,368:515-521. |
[18] | Link V, Sinha A K, Vashista P, Hofmann M G, Proels R K, Ehness R, Roitsch T. A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett, 2002,531:179-183. |
[19] | Zhu M D, Zhang M, Gao D J, Zhou K, Tang S J, Zhou B, Lyu Y M. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. Int J Mol Sci, 2020,21:E1857. |
[20] |
Wu Z, Liang J, Wang C, Zhao X, Zhong X, Cao X, Li G, He J, Yi M. Overexpression of lily HsfA3s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism. J Exp Bot, 2018,69:2005-2021.
pmid: 29394377 |
[21] |
Li W, Wang B, Wang M, Chen M, Yin J M, Kaleri G M, Zhang R J, Zuo T N, You X, Yang Q. Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation. J Integr Plant Biol, 2014,56:364-372.
doi: 10.1111/jipb.12136 pmid: 24304603 |
[22] | Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of hemeoxygenase-1 signalling system. Plant Cell Environ, 2013,36:956-969. |
[23] | Rykaczewska K. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am J Plant Sci, 2013,4:2386-2393. |
[24] | Tang R M, Niu S Y, Zhang G D, Chen G S, Haroon M, Yang Q, Rajora O P, Li X Q. Physiological and growth responses of potato cultivars to heat stress. Botany, 2018,96:897-912. |
[25] | Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol, 2009,50:970-975. |
[26] |
Li P S, Yu T F, He G H, Chen M, Zhou Y B, Chai S C, Xu Z S, Ma Y Z. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics, 2014,15:1009.
pmid: 25416131 |
[27] |
Emani C, Garcia J M, Lopata-Finch E, Pozo M J, Uribe P, Kim D J, Sunilkumar G, Cook D R, Kenerley C M, Rathore K S. Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J, 2003,1:321-336.
doi: 10.1046/j.1467-7652.2003.00029.x pmid: 17166131 |
[28] | 贾小霞, 齐恩芳, 刘石, 文国宏, 马胜, 李建武, 黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响. 作物学报, 2019,45:1166-1175. |
Jia X X, Qi E F, Liu S, Wen G H, Ma S, Li J W, Huang W. Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression. Acta Agron Sin, 2019,45:1166-1175. (in Chinese with English abstract). | |
[29] | Gawel S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek, 2004,57:453-455. |
[30] | Zhong L L, Zhou W, Wang H J, Ding S H, Lu Q T, Wen X G, Peng L W, Zhang L X, Lu C M. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell, 2013,25:2925-2943. |
[31] |
Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006,125:443-451.
pmid: 16678092 |
[32] | Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress- responsive gene expression. Proc Natl Acad Sci USA, 2006,103:18822-18827. |
[33] | Li X D, Wang X L, Cai Y M, Wu J H, Mo B T, Yu E R. Arabidopsis heat stress transcription factors A2 (HSFA2) and A3 (HSFA3) function in the same heat regulation pathway. Acta Physiol Plant, 2017,39:67-75. |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278. |
[3] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[4] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[5] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[6] | ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929. |
[7] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[8] | TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694. |
[9] | ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528. |
[10] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[11] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
[12] | XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85. |
[13] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[14] | ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459. |
[15] | SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308. |
|