Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1175-1187.doi: 10.3724/SP.J.1006.2021.04148

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping

DANG Ke(), GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li*(), GAO Xiao-Li*()   

  1. College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Research Station of Crop Gene Resources & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2020-07-06 Accepted:2020-12-01 Online:2021-06-12 Published:2020-12-28
  • Contact: FENG Bai-Li,GAO Xiao-Li E-mail:dangke4718@163.com;fengbaili@nwsuaf.edu.cn;gao2123@nwsuaf.edu.cn
  • Supported by:
    The Shaanxi Province Key Research and Development Project(2018TSCXL-NY-03-01);The Shaanxi Province Modern Crops Seed Industry Project(20171010000004);The Minor Grain Crops Research and Development System of Shaanxi Province(2009-2019)

Abstract:

To explore the effect of nitrogen (N) on the leaf gas exchange, chlorophyll fluorescence, nitrogen characteristics and yield of mung bean under intercropping with proso millet, the field experiments were conducted in 2018 and 2019 using split-plot design with two cropping patterns [proso millet-mung bean intercropping (PM) and soled mung bean (SM)] and four total N fertilizer application rates [0 (N0), 45 (N1), 90 (N2), and 135 kg hm-2(N3)]. Under N application, the net photosynthetic rate (Pn) and transpiration rate (Tr) of mung bean in intercropping increased by 10.5%-24.5% and 15.2%-29.5% on average, which improved the photosynthetic characteristics. Maximum photochemical efficiency (Fv/Fm) and actual photochemical efficiency (ΦPSII) increased by 2.9%-7.8% and 11.7%-28.4%, respectively, and PSII non-photochemical quenching coefficient (NPQ) decreased by 10.3%-17.4%. The chlorophyll fluorescence parameters were improved, resulting in enhancing the ability to capture and utilize light energy, and the activity of PSII reaction center was enhanced. Leaf area per plant, N content per unit dry mass of leaves (Nmass) and N content per unit area (Narea) increased first and then decreased with the increase of N application rate. The content of Chl a and Chl b increased. Photosynthetic N-use efficiency (PNUE) decreased compared with N0. N application significantly increased the dry matter accumulation and pods of mung bean in intercropping. Under the treatment of N1, N2, and N3, 100-grain weight and yield were increased by 1.1%-6.9% and 9.3%-19.7%, respectively. In the two-year trial intercropping, the land equivalent ratio of each treatment was 1.63-2.07, indicating the yield advantage of intercropping. N application could improve the photosynthetic production capacity of mung bean in intercropping and effectively regulate the adaptive response of photosynthetic system to shading. The response of photosynthetic performance of intercropping to N fertilizer was greater than that of single-plant systems. Under the conditions of this experiment, the proso millet and mung bean intercropping model can increase land productivity, and it can be used as a planting model to promote dry farming in northwestern China. The intercropping mung bean had the best photosynthetic characteristics at 90 kg hm-2, which showed the highest yield, and the largest land equivalent ratio.

Key words: mung bean, nitrogen fertilizer, intercropping, photosynthetic characters, photosynthetic nitrogen-use efficiency, yield

Fig. 1

Average daily rainfall and mean temperature during whole growth period of the experiment plots in 2018 and 2019"

Fig. 2

Effects of nitrogen treatments on the gas exchanges in intercropping mung bean Values followed by different lowercase letters above the bars mean significant differences at the 0.05 probability level in the same cropping pattern. SM: sole mung bean; PM: intercropping mung bean. N0: nitrogen fertilizer application of 0 kg hm-2; N1: nitrogen fertilizer application of 45 kg hm-2; N2: nitrogen fertilizer application of 90 kg hm-2; N3: nitrogen fertilizer application of 135 kg hm-2. Pn: net photosynthesis rate; Ci: intercellular CO2 concentration; Tr: evaporation rate; WUE: water use efficiency."

Fig. 3

Effects of nitrogen level on the chlorophyll fluorescence parameters in intercropping mung bean Treatments are the same as those given in Fig. 2. Values followed by different lowercase letters above the bars mean significant differences at the 0.05 probability level in the same cropping pattern. Fv/Fm: the maximal photochemical efficiency of photosystem II; ΦPSII: the actual PSII efficiency (ΦPSII); NPQ: non-photochemical quenching coefficient."

Fig. 4

Effects of nitrogen treatments on the chlorophyll fluorescence parameters in intercropping mung bean Treatments are the same as those given in Fig. 2. Values followed by different lowercase letters above the bars mean significant differences at the 0.05 probability level in the same cropping pattern."

Fig. 5

Effects of nitrogen treatments on the chlorophyll a/b in intercropping mung bean Treatments are the same as those given in Fig. 2. Values followed by different lowercase letters above the bars mean significant differences at the 0.05 probability level in the same cropping pattern. "

Table 1

Effects of nitrogen treatments on the nitrogen characteristics of intercropping mung bean leaves"

种植模式
Planting
pattern
氮水平
N level
(kg hm-2)
单株叶面积
Leaf area per plant (cm2)
比叶质量
LMA
(g m-2)
单位干物质量氮含量
Nmass
(g kg-1)
单位面积氮含量
Narea
(mg cm-2)
光合氮利用效率
PNUE
(CO2 μmol g-1 s-1)
SM N0 3178.9±310.2 a 51.33±5.05 b 24.51±0.21 b 0.13±0.01 b 14.43±1.51 a
N1 3706.3±112.4 a 60.83±1.82 ab 27.77±0.57 a 0.17±0.00 a 13.60±0.34 a
N2 3608.4±470.9 a 66.73±8.42 a 28.11±1.12 a 0.20±0.02 a 11.25±0.98 b
N3 3400.4±188.3 a 67.10±3.62 a 26.67±1.32 a 0.18±0.02 a 10.66±0.95 b
PM N0 2308.5±200.8 c 57.59±4.80 a 20.01±1.08 b 0.12±0.01 a 13.97±0.84 a
N1 2658.9±222.3 b 55.31±4.86 a 25.64±0.20 a 0.14±0.01 a 12.73±0.65 a
N2 3019.6±121.4 a 54.04±2.15 a 25.00±0.59 a 0.14±0.00 a 13.81±0.85 a
N3 2913.0±174.7 ab 56.76±3.31 a 21.61±2.16 b 0.12±0.02 a 13.55±2.90 a
变异来源Variation source
种植模式Planting pattern (P) ** * ** ** NS
氮水平N level (N) * NS ** ** *
种植模式×氮水平 P×N NS * NS ** *

Fig. 6

Effects of nitrogen treatments on the dry matter accumulation in intercropping mung bean Treatments are the same as those given in Fig. 2. Values followed by different lowercase letters above the bars mean significant differences at the 0.05 probability level in the same cropping pattern."

Table 2

Effects of nitrogen treatments on the agronomic characters in intercropping mung bean"

年份
Year
种植模式
Planting
pattern
氮水平
N level
(kg hm-2)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
主茎节数
Nodes of
main stem
主茎分枝数
Branches of
main stem
单株荚数
Pods per
plant
2018 SM N0 60.40±6.15 a 7.58±1.25 a 9.80±0.84 a 5.00±0.00 c 52.80±2.77 c
N1 65.40±7.81 a 7.77±0.44 a 10.40±1.34 a 5.80±1.10 bc 68.40±6.47 a
N2 65.60±4.97 a 8.44±1.08 a 10.40±0.89 a 6.40±0.55 ab 67.60±1.41 a
N3 63.00±4.62 a 8.76±0.87 a 9.20±1.30 a 7.00±0.00 a 57.60±5.57 b
PM N0 61.80±6.35 b 7.32±0.64 a 9.40±0.55 a 5.00±1.00 a 30.00±4.82 c
N1 68.20±8.44 a 7.94±0.91 a 10.60±0.89 a 5.20±0.45 a 41.40±4.16 b
N2 68.80±2.83 a 8.07±0.55 a 9.6±0.89 a 5.20±0.45 a 48.62±2.09 a
N3 71.40±3.65 a 7.83±0.81 a 10.8±0.84 a 5.80±0.45 a 47.68±2.25 a
2019 SM N0 63.86±4.01 a 7.79±0.43 a 10.20±0.71 a 5.60±0.45 a 48.20±5.85 c
N1 64.60±4.93 a 7.99±0.83 a 11.00±0.71 a 5.60±1.10 a 68.60±1.48 a
N2 67.20±1.73 a 8.63±0.91 a 11.00±0.89 a 6.80±0.45 a 63.00±6.15 ab
N3 68.64±1.86 a 8.48±0.26 a 11.60±1.14 a 7.00±0.00 a 56.40±2.31 b
PM N0 55.08±4.16 c 6.92±0.45 a 9.40±1.22 a 5.00±0.00 a 25.40±5.12 b
N1 66.20±3.10 b 7.81±0.47 a 10.80±0.84 a 5.00±0.71 a 39.00±5.61 a
年份
Year
种植模式
Planting
pattern
氮水平
N level
(kg hm-2)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
主茎节数
Nodes of
main stem
主茎分枝数
Branches of
main stem
单株荚数
Pods per
plant
2019 N2 75.18±2.27 a 7.58±0.65 a 10.00±1.14 a 5.00±0.00 a 47.40±1.34 a
N3 73.08±3.79 a 7.93±0.50 a 9.40±1.10 a 5.00±0.00 a 46.80±2.19 a
变异来源Variation source
年份Year (Y) NS NS NS NS *
种植模式Planting pattern (P) * * NS ** **
氮水平N level (N) ** NS NS ** **
年份×种植模式Y×P NS NS * NS NS
年份×氮水平Y×N NS NS NS NS NS
种植模式×氮水平P×N ** NS NS * **
年份×种植模式×氮水平Y×P×N NS NS NS NS NS

Table 3

Effects of nitrogen treatments on yield of proso millet and mung bean"

年份
Year
种植模式
Planting pattern
氮水平
N level
(kg hm-2)
百粒重
100-grain weight
(g)
绿豆产量
Mung bean grain yield
(kg hm-2)
糜子产量
Proso millet grain yield (kg hm-2)
土地当量比
Land equivalent ratio
2018 SM N0 5.53±0.21 b 1069.3±114.2 b 4067.8±287.6 c
N1 5.67±0.29 ab 1297.8±71.6 a 4400.8±287.1 c
N2 5.83±0.14 a 1168.8±98.4 ab 4911.4±321.4 b
N3 5.65±0.19 ab 1137.5±96.7 b 5631.6±206.7 a
PM N0 5.22±0.07 b 806.0±27.7 c 4240.2±152.5 c 1.81±0.14 b
N1 5.61±0.35 a 853.7±23.7 b 5286.4±283.1 b 1.86±0.02 b
N2 5.35±0.14 b 905.0±45.0 a 6331.8±386.2 a 2.07±0.14 a
N3 5.28±0.19 b 812.0±11.8 bc 5120.1±354.1 b 1.63±0.07 c
2019 SM N0 5.97±0.09 b 1198.7±69.8 b 4259.4±382.0 d
N1 6.30±0.20 a 1350.5±35.1 a 4737.5±99.5 c
N2 6.33±0.14 a 1315.5±58.0 a 5196.9±168.8 b
年份
Year
种植模式
Planting pattern
氮水平
N level
(kg hm-2)
百粒重
100-grain weight
(g)
绿豆产量
Mung bean grain yield
(kg hm-2)
糜子产量
Proso millet grain yield (kg hm-2)
土地当量比
Land equivalent ratio
2019 N3 6.04±0.22 b 1217.6±63.2 b 5646.9±234.1 a
PM N0 5.75±0.15 b 768.5±27.9 c 5043.8±241.0 d 1.84±0.18 a
N1 6.11±0.19 a 867.7±41.9 b 5656.3±215.4 c 1.84±0.05 a
N2 6.12±0.15 a 979.8±34.8 a 6531.3±403.3 a 2.00±0.08 a
N3 5.81±0.22 b 937.9±57.1 a 6075.0±84.2 b 1.85±0.09 a
变异来源Variation source
年份Year (Y) ** ** ** *
种植模式Planting pattern (P) ** ** **
氮水平N level (N) ** ** ** NS
年份×种植模式Y×P NS NS **
年份×氮水平Y×N * NS NS NS
种植模式×氮水平P×N * ** **
年份×种植模式×氮水平Y×P×N NS NS *

Fig. 7

Correlation analysis of leaf photosynthetic and nitrogen utilization characteristics and yield SM: sole mung bean; PM: intercropping mung bean. *: significant correlation at the 0.05 probability level; **: significant correlation at the 0.01 probability level."

[1] 苏本营, 陈圣宾, 李永庚, 杨文钰. 间套作种植提升农田生态系统服务功能. 生态学报, 2013,33:4505-4514.
Su B Y, Chen S B, Li Y G, Yang W Y. Intercropping enhances the farmland ecosystem services. Acta Ecol Sin, 2013,33:4505-4514 (in Chinese with English abstract).
[2] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015,41:1426-1434.
Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron Sin, 2015,41:1426-1434 (in Chinese with English abstract).
[3] 李玉英, 余常兵, 孙建好, 李春杰, 李隆, 程序. 蚕豆/玉米间作系统经济生态施氮量及对氮素环境承受力. 农业工程学报, 2008,24(3):223-227.
Li Y Y, Yu C B, Sun J H, Li C J, Li L, Cheng X. Nitrogen environmental endurance and economically-ecologically appropriate amount of nitrogen fertilizer in faba bean/maize intercropping system. Trans CSAE, 2008,24(3):223-227 (in Chinese with English abstract).
[4] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001,71:173-181.
[5] Reddy M S, Willey R W. Growth and resource use studies in an intercrop of pearl millet/groundnut. Field Crops Res, 1981,4:13-24.
[6] Chapagain T, Riseman A. Barley-pea intercropping: effects on land productivity, carbon and nitrogen transformations. Field Crops Res, 2014,166:18-25.
[7] 王田涛, 王琦, 王惠珍, 张恩和. 连作条件下间作模式对当归生长特性和产量的影响. 草业学报, 2013,22(2):54-61.
Wang T T, Wang Q, Wang H Z, Zhang E H. Effects of intercropping patterns on growth characters and yield of Angelica sinensis under continuous mono-cropping planting. Acta Pratacult Sin, 2013,22(2):54-61 (in Chinese with English abstract).
[8] 宫香伟, 李境, 马洪驰, 陈光华, 王孟, 杨璞, 高金锋, 冯佰利. 黄土高原旱作区糜子-绿豆带状种植农田小气候特征与产量效应. 应用生态学报, 2018,29:3256-3266.
Gong X W, Li J, Ma H C, Chen G H, Wang M, Yang P, Gao J F, Feng B L. Field microclimate and yield for proso millet intercropping with mung bean in the dryland of Loess Plateau, Northwest China. Chin J Appl Ecol, 2018,29:3256-3266 (in Chinese with English abstract).
[9] 党科, 宫香伟, 陈光华, 赵冠, 刘龙, 王洪露, 杨璞, 冯佰利. 糜子绿豆带状种植下糜子的氮素积累、代谢及产量变化. 作物学报, 2019,45:1880-1890.
Dang K, Gong X W, Chen G H, Zhao G, Liu L, Wang H L, Yang P, Feng B L. Nitrogen accumulation,metabolism, and yield of proso millet in proso millet mung bean intercropping systems. Acta Agron Sin, 2019,45:1880-1890 (in Chinese with English abstract).
[10] 陈剑, 敖雪, 姚兴东, 薛仁风, 赵阳, 王英杰, 李韬, 金晓梅, 庄艳, 葛维德, 闫广艳. 施氮肥对不同株型赤豆品种光合生理、干物积累及产量的影响. 江苏农业科学, 2018,46(23):90-93.
Chen J, Ao X, Yao X D, Xue R F, Zhao Y, Wang Y J, Li T, Jin X M, Zhuang Y, Ge W D, Yan G Y. Effects of nitrogen application on photosynthetic physiology, dry matter accumulation and yield of different plant-types of adzuki beans. Jiangsu Agric Sci, 2018,46(23):90-93 (in Chinese with English abstract).
[11] 叶卫军, 杨勇, 张丽亚, 田东丰, 张玲玲, 周斌. 氮肥用量对绿豆品种皖科绿3号农艺性状及氮肥利用率的影响. 作物杂志, 2019, ( 3):137-141.
Ye W J, Yang Y, Zhang L Y, Tian D F, Zhang L L, Zhou B. Effects of nitrogen on agronomic traits and nitrogen use efficiency of mung bean cultivar Wankelü 3. Crops, 2019, ( 3):137-141 (in Chinese with English abstract).
[12] 司玉坤, 齐欣, 武庆慧, 白红波, 赵亚南, 叶优良, 黄玉芳. 氮、磷肥用量对豫中地区大豆产量、干物质及经济效益的影响. 中国农学通报, 2019,35(15):30-34.
Si Y K, Qi X, Wu Q H, Bai H B, Zhao Y N, Ye Y L, Huang Y F. Nitrogen and phosphorus fertilizer rate affect yield, dry matter and economic benefits of soybean in central Henan. Chin Agric Sci Bull, 2019,35(15):30-34 (in Chinese with English abstract).
[13] 贾曼曼, 肖靖秀, 汤利, 郑毅. 不同施氮量对小麦蚕豆间作作物产量及其光合特征的影响. 云南农业大学学报(自然科学), 2017,32(2):350-357.
Jia M M, Xiao J X, Tang L, Zheng Y. Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping. J Yunnan Agric Univ (Nat Sci), 2017,32(2):350-357 (in Chinese with English abstract).
[14] 林松明, 张正, 南镇武, 孟维伟, 李林, 郭峰, 万书波. 施钙对不同种植模式下花生产量及生理特性的影响. 华北农学报, 2019,34(3):111-118.
Lin S M, Zhang Z, Nan Z W, Meng W W, Li L, Guo F, Wan S B. Effects of calcium application on peanut yield and physiological characteristics under different planting patterns. Acta Agric Boreali-Sin, 2019,34(3):111-118 (in Chinese with English abstract).
[15] Vos J, Pelvander P. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. Eur J Agron, 2001,14:209-220.
[16] 唐敬超, 史作民, 罗达, 刘世荣. 遮荫处理对灰木莲幼苗叶片光合氮利用效率的影响. 生态学报, 2017,37:7493-7502.
Tang J C, Shi Z M, Luo D, Liu S R. Photosynthetic nitrogen-use efficiency of Manglietia glauca seedling leaves under different shading levels. Acta Ecol Sin, 2017,37:7493-7502 (in Chinese with English abstract).
[17] 林洪鑫, 潘晓华, 袁展汽, 肖运萍, 刘仁根, 汪瑞清, 吕丰娟. 施氮和木薯-花生间作对木薯养分积累和系统养分利用的影响. 中国农业科学, 2018,51:3275-3290.
Lin H X, Pan X H, Yuan Z Q, Xiao Y P, Liu R G, Wang R Q, Lyu F J. Effects of nitrogen application and cassava-peanut intercropping on cassava nutrient accumulation and system nutrient utilization. Sci Agric Sin, 2018,51:3275-3290 (in Chinese with English abstract).
[18] 褚军, 薛建辉, 吴殿鸣, 金梅娟, 吴永波. 不同施氮水平下杨树-苋菜间作系统对土壤氮素流失的影响. 应用生态学报, 2014,25:2591-2597.
Chu J, Xue J H, Wu D M, Jin M J, Wu Y B. Effects of poplar-amaranth intercropping system on the soil nitrogen loss under different nitrogen applying levels. Chin J Appl Ecol, 2014,25:2591-2597 (in Chinese with English abstract).
[19] 覃潇敏, 郑毅, 汤利, 龙光强. 施氮对间作条件下玉米、马铃薯根际微生物群落功能多样性的影响. 农业资源与环境学报, 2015,32:354-362.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of nitrogen application rates on rhizosphere microbial community functional diversity in maize and potato intercropping. J Agric Res Environ, 2015,32:354-362 (in Chinese with English abstract).
[20] 杨文亭, 李志贤, 赖健宁, 吴鹏, 章莹, 王建武. 甘蔗-大豆间作和减量施氮对甘蔗产量和主要农艺性状的影响. 作物学报, 2014,40:556-562.
Yang W T, Li Z X, Lai J N, Wu P, Zhang Y, Wang J W. Effects of sugarcane-soybean intercropping and reduced nitrogen application on yield and major agronomic traits of sugarcane. Acta Agron Sin, 2014,40:556-562 (in Chinese with English abstract).
[21] 王一, 张霞, 杨文钰, 孙歆, 苏本营, 崔亮. 不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响. 中国农业科学, 2016,49:2072-2081.
Wang Y, Zhang X, Yang W Y, Sun X, Su B Y, Cui L. Effect of shading on soybean leaf photosynthesis and chlorophyll fluorescence characteristics at different growth stages. Sci Agric Sin, 2016,49:2072-2081 (in Chinese with English abstract).
[22] 宫香伟, 党科, 李境, 罗艳, 赵冠, 杨璞, 高小丽, 高金锋, 王鹏科, 冯佰利. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019,52:4139-4153.
Gong X W, Dang K, Li J, Luo Y, Zhao G, Yang P, Gao X L, Gao J F, Wang P K, Feng B L. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Sci Agric Sin, 2019,52:4139-4153 (in Chinese with English abstract).
[23] 焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东, 李增嘉. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006,32:917-923.
Jiao N Y, Ning T Y, Zhao C, Wang Y, Shi Z Q, Hou L T, Fu G Z, Jiang X D, Li Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agron Sin, 2006,32:917-923 (in Chinese with English abstract).
[24] 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008,41:2624-2632.
Lyu L H, Zhao M, Zhao J R, Tao H B, Wang P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Sci Agric Sin, 2008,41:2624-2632 (in Chinese with English abstract).
[25] 张艾英, 郭二虎, 王军, 范惠萍, 李瑜辉, 王丽霞, 王秀清, 程丽萍. 施氮量对春谷农艺性状、光合特性和产量的影响. 中国农业科学, 2015,48:2939-2951.
Zhang A Y, Guo E H, Wang J, Fan H P, Li Y H, Wang L X, Wang X Q, Cheng L P. Effect of nitrogen application rate on agronomic, photosynthetic characteristics and yield of spring foxtail millet. Sci Agric Sin, 2015,48:2939-2951 (in Chinese with English abstract).
[26] Seemann P J R. Photosynthetic induction state of leaves in a soybean canopy in relation to light regulation of ribulose-1-5-bisphosphate carboxylase and stomatal conductance. Plant Physiol, 1990,94:628-633.
[27] 张绪成, 上官周平. 施氮对旱地不同抗旱性小麦叶片光合色素含量与荧光特性的影响. 核农学报, 2007,21:299-304.
Zhang X C, Shangguan Z P. Effect of nitrogen fertilization on photosynthetic pigment and fluorescence characteristics in leaves of winter wheat cultivars on dryland. J Nucl Agric Sci, 2007,21:299-304 (in Chinese with English abstract).
[28] 荣立苹, 李倩中, 李淑顺, 唐玲. 遮荫对鸡爪槭生理特性和叶绿素荧光参数的影响. 西南农业学报, 2013,26(1):144-147.
Rong L P, Li Q Z, Li S S, Tang L. Effects of shading on physiological characteristics and chlorophyll fluorescence parameters of acer palmatum. Southwest China J Agric Sci, 2013,26(1):144-147 (in Chinese with English abstract).
[29] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014,47:1489-1501.
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014,47:1489-1501 (in Chinese with English abstract).
[30] Monneveux P, Zaidi P H, Sanchez C. Population density and low nitrogen affects yield-associated traits in tropical maize. Crop Sci, 2005,45:535.
[31] Chonggang X, Rosie F, Wullschlegar S D, Wilson C J, Cai M, McDowell N G. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS One, 2012,7:e37914.
[32] 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响. 植物生态学报, 2018,42:672-680.
Zhu Q L, Xiang R, Tang L, Long G Q. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition. Chin J Plant Ecol, 2018,42:672-680 (in Chinese with English abstract).
[33] 黎星, 程慧煌, 曾勇军, 汪勇, 商庆银. 不同时期超级杂交稻光合特性及氮素利用效率研究. 核农学报, 2019,33:978-987.
Li X, Cheng H H, Zeng Y J, Wang Y, Shang Q Y. Study on photosynthetic characteristics and nitrogen utilization efficiency of super hybrid rice in different periods. J Nucl Agric Sci, 2019,33:978-987 (in Chinese with English abstract).
[34] Trouwborst G, Hogewoning S W, Harbinson J, Van Ieperen W. Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irradiance. Physiol Plant, 2011,142:157-169.
[35] 张玉春, 杨敏, 周齐齐, 刘希伟, 李彦生, 张敏, 蔡瑞国. 不同氮肥用量条件下花后遮光对冬小麦干物质和氮素积累与转运的影响. 华北农学报, 2018,33(3):203-209.
Zhang Y C, Yang M, Zhou Q Q, Liu X W, Li Y S, Zhang M, Cai R G. Effects of shading after anthesis under different nitrogen application rates on dry matter and nitrogen accumulation and translocation in winter wheat. Acta Agric Boreali-Sin, 2018,33(3):203-209 (in Chinese with English abstract).
[36] 王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米光合特性差异及氮肥调控效应. 中国生态农业学报, 2015,23:141-149.
Wang X C, Yang W Y, Deng X Y, Zhang Q, Yong W T, Liu W G, Yang F, Mao S M. Differences in maize photosynthetic characteristics and nitrogen regulation effects in maize/soybean and maize/sweet potato relay strip intercropping. Chin J Eco-Agric, 2015,23:141-149 (in Chinese with English abstract).
[37] 刘涛, 鲁剑巍, 任涛, 李小坤, 丛日环. 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系. 植物营养与肥料学报, 2016,22:518-524.
Liu T, Lu J W, Ren T, Li X K, Cong R H. Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels. Plant Nutr Fert Sci, 2016,22:518-524 (in Chinese with English abstract).
[38] 曾建敏, 彭少兵, 崔克辉, 黄见良. 热带水稻光合特性及氮素光合效率的差异研究. 作物学报, 2006,32:1817-1822.
Zeng J M, Peng S B, Cui K H, Hang J L. Genetic variation in photosynthetic characteristics and photosynthetic nitrogen use efficiency in tropical rice. Acta Agron Sin, 2006,32:1817-1822 (in Chinese with English abstract).
[39] Millard P, Sommerkom M, Gwen-Aelle G. Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol, 2007,175:11-28.
[40] Reich P B, Walters M B. Photosynthesis-nitrogen relations in Amazonian tree species: II. Variation in nitrogen vis-a-vis specific leaf area influences mass- and area-based expressions. Oecologia, 1994,97:73-81.
[41] Gong W Z, Jiang C D, Wu Y S, Chen H H, Liu W Y, Yang W Y. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica, 2015,53:259-268.
[42] Hu Y J, Zhang H C. Optimizing nitrogen management strategy under wheat straw incorporation for higher rice production and nitrogen use efficiency. J Plant Nutr, 2016,40:492-505.
[43] 楚光红, 章建新, 唐长青, 高阳, 傅积海. 密度对中熟春大豆冠层结构及光合特性的影响. 中国农学通报, 2018,34(18):16-22.
Chu G H, Zhang J X, Tang C Q, Gao Y, Fu J H. Density affecting canopy structure and photosynthetic characteristics of medium maturity spring soybean. Chin Agric Sci Bull, 2018,34(18):16-22 (in Chinese with English abstract).
[44] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017,50:3702-3713.
Gao Y L, Sun Z X, Bai W, Feng L S, Yang N, Cai Q, Feng C, Zhang Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Sci Agric Sin, 2017,50:3702-3713 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[13] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!