Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1768-1778.doi: 10.3724/SP.J.1006.2021.04170

• RESEARCH PAPERS • Previous Articles     Next Articles

Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid

XUE Xiao-Meng1(), WU JIE1, WANG Xin1, BAI Dong-Mei2, HU Mei-Ling1, YAN Li-Ying1, CHEN Yu-Ning1, KANG Yan-Ping1, WANG Zhi-Hui1, HUAI Dong-Xin1,*(), LEI Yong1, LIAO Bo-Shou1,*()   

  1. 1Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs / Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
    2Industrial Crops Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, Shanxi, China
  • Received:2020-07-26 Accepted:2021-01-21 Online:2021-09-12 Published:2021-02-23
  • Contact: HUAI Dong-Xin,LIAO Bo-Shou E-mail:xiaomengxue1991@163.com;dxhuai@caas.cn;lboshou@hotmail.com
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Key Area Research and Development Program of Guangdong Province(2020B020219003)

Abstract:

High oleate (HO) peanut is highly popular for its improved nutrient value and strengthened storage stability among customers and peanut processing enterprises. In recent years, with the adoption of HO peanut in our country, the cold tolerance of peanut at germination stage in high altitude or high latitude area has become a major concern. To figure out the relationship between the seed oleic acid content and the cold tolerance at germination stage in peanut, the germination rate and germination index of seeds under cold stress were investigated among six peanut cultivars with normal content of oleic acid (NO) and their backcross-derived HO lines, respectively. The results showed that the oleic acid content was not significantly correlated with the cold tolerance at germination stage. The contents of eight main fatty acids under cold stress at germination stage were tracked in Quanhua 551 (Quanhua 551-NO) and its HO offspring line (Quanhua 551-HO), and the germination rate of Quanhua 551-HO was significantly lower than that of Quanhua 551-NO under cold stress. The oleic acid content of Quanhua 551-NO was significantly decreased while the linoleic acid content was significantly increased under cold stress. However, the contents of oleic acid and linoleic acid exhibited the same trend in Quanhua 551-HO, and there was no significant difference. The expression profiles offatty acid desaturase 2 (AhFAD2) genes in both Quanhua 551-NO and Quanhua 551-HO under cold stress revealed that the relative expression level of AhFAD2-1A/B was significantly up-regulated, while that of AhFAD2-4A/B was significantly down-regulated under cold stress in Quanhua 551-NO. Conversely, the relative expression level of AhFAD2-1A/B was significantly decreased, but the relative expression level of AhFAD2-4A/B was significantly increased under cold stress in Quanhua 551-HO. These results implied that the up-regulation of AhFAD2-4A/Bin HO peanut may partly compensate for lost function of AhFAD2-1A/Bin response to cold stress. In conclusion, the oleic acid content in seed was not the main factor to determinate the cold tolerance at germination stage.

Key words: high oleate peanut, cold stress, germination rate, fatty acid desaturase 2 (FAD2)

Table 1

Oleic acid contents of peanut cultivars in this study"

品种
Cultivar
油酸含量
Oleic acid content (%)
品种
Cultivars
油酸含量
Oleic acid content (%)
徐花13号
Xuhua 13
普通油酸NO 45.58 中花21
Zhonghua 21
普通油酸NO 38.40
高油酸HO 81.14 高油酸HO 80.83
徐花9号
Xuhua 9
普通油酸NO 49.73 泉花551
Quanhua 551
普通油酸NO 50.72
高油酸HO 81.60 高油酸HO 80.62
中花16
Zhonghua 16
普通油酸NO 50.56 漯花9号
Luohua 9
普通油酸NO 47.90
高油酸HO 80.70 高油酸HO 80.50

Table 2

Primer sequences of qRT-PCR"

基因
Gene
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
AhFAD2-1A, AhFAD2-1B RTAhFAD2-1-F ATCTGCTATATCACATAGCAACTCT
RTAhFAD2-1-R ACTGTTGCCAATGCTCCTCT
AhFAD2-3A, AhFAD2-3B RTAhFAD2-3-F GGTCTTATCCGTCTTGTCATGG
RTAhFAD2-3-R AGATGAATCGTAATGTGGCAATG
AhFAD2-4A, AhFAD2-4B RTAhFAD2-4-F TCATTCTGCCGGGAAGAGG
RTAhFAD2-4-R ATGGCGACATAGGCGAAAAT
AhActin Actin-F TAAGAACAATGTTGCCATACAGA
Actin-R GTTGCCTTGGATTATGAGC

Fig. 1

Effects of cold stress on germination rate and its corresponding normal oleate seeds in high oleate seeds NO: normal oleate peanut; HO: high oleate peanut. *, **, and *** mean significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 2

Germination index of high oleate seeds and normal oleate seeds in different peanut varieties under cold stress CK: control group, germination of seed at 25℃ for six days; T: treatment group, germination of seed at 15℃ for 1-3 days, and then 25℃ for 4-6 days; NO: normal oleate peanut; HO: high oleate peanut. Bars superscripted by different lowercase letters are significantly different at P < 0.05 by one-way ANOVA and least significant difference (LSD) test. "

Fig. 3

Seed germination of peanut with high oleate and normal oleate in Quanhua 551 at different temperatures 25-NO: the normal oleate peanut of Quanhua 551 germinated at 25℃ for six days; 15-NO: the normal oleate peanut of Quanhua 551 germinated at 15℃ from the 1st to 3rd day then at 25℃ for the last three days; 25-HO: the high oleate peanut of Quanhua 551 germinated at 25℃ for six days; 15-HO: the high oleate peanut of Quanhua 551 germinated at 15℃ from the 1st to 3rd day then at 25℃ from the 4th to 6th day."

Fig. 4

Changes of fatty acid contents at seed germination stage of Quanhua 551 under cold stress C16:0: palmitic acid; C18:0: stearic acid; C18:1: oleic acid; C18:2: linoleic acid; C20:0: arachidic acid; C20:1: gadoleic acid; C22:0: behenic acid; C24:0: lignoceric acid. CK: control group, germination of seed at 25℃ for six days; T: treatment group, germination of seed at 15℃ from the 1st to 3rd day, and then 25℃ from 4th to 6th day; NO: normal oleate peanut; HO: high oleate peanut. * means significant difference at the 0.05 probability levels."

Fig. 5

Relative expression levels of AhFAD2 genes in high oleate and normal oleate of Quanhua 551 under cold stress a: the expression pattern of AhFAD2-1A/B in Quanhua 551-NO at different temperatures; b: the expression pattern of AhFAD2-3A/B in Quanhua 551-NO at different temperatures; c: the expression pattern of AhFAD2-4A/B in Quanhua 551-NO at different temperatures; d: the expression pattern ofAhFAD2-1A/B in Quanhua 551-HO at different temperatures; e: the expression pattern ofAhFAD2-3A/B in Quanhua 551-HO at different temperatures; f: the expression pattern of AhFAD2-4A/B in Quanhua 551-HO at different temperatures. CK: control group, germination of seed at 25℃ for six days; T: treatment group, germination of seed at 15℃ from 1st to 3rd day, and then 25℃ from the 4th to 6th day; NO: normal oleate peanut; HO: high oleate peanut. *, **, and *** mean significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively. "

[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42:1-6.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42:1-6 (in Chinese with English abstract).
[2] Barkley N A, Isleib T G, Wang M L, Pittman R N. Genotypic effect of ahFAD2 on fatty acid profiles in six segregating peanut ( Arachis hypogaeaL.) populations. BMC Genet, 2013, 14:62.
doi: 10.1186/1471-2156-14-62 pmid: 23866023
[3] 宋江春, 李拴柱, 王建玉, 张秀阁, 朱雪峰, 乔建礼, 向臻. 我国高油花生育种研究进展. 作物杂志, 2018, (3):25-31.
Song J C, Li S Z, Wang J Y, Zhang X G, Zhu X F, Qiao J L, Xiang Z. Advances in breeding of high oil peanut in China. Crops, 2018, (3):25-31 (in Chinese with English abstract).
[4] Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. Heredity, 1989, 80:8-10.
[5] Nawade B, Mishra G P, Radhakrishnan T, Dodia S M, Ahmad S, Kumar A, Kundu R. High oleic peanut breeding: Achievements, perspectives, and prospects. Trends Food Sci Technol, 2018, 78:107-119.
doi: 10.1016/j.tifs.2018.05.022
[6] Sales-Campos H, Reis de Souza P, Crema-Peghini B, Santana da Silva J, Ribeiro-Cardoso C. An overview of the modulatory effects of oleic acid in health and disease. Min Rev Med Chem, 2013, 13:201-210.
[7] 颜启传. 种子学. 北京: 中国农业出版社, 2001. pp 91-102.
Yan Q C. Seed Science. Beijing: China Agriculture Press, 2001. pp 91-102(in Chinese).
[8] Bell M J, Gillespie T J, Roy R C, Michaels T E, Tollenaar M. Peanut leaf photosynthetic activity in cool field environments. Crop Sci, 1994, 34, 1023-1029.
doi: 10.2135/cropsci1994.0011183X003400040035x
[9] 王传堂, 张建成, 唐月异, 于树涛, 王强, 刘峰, 李秋. 中国高油酸花生育种现状与展望. 山东农业科学, 2018, 50(6):171-176.
Wang C T, Zhang J C, Tang Y Y, Yu S T, Wang Q, Liu F, Li Q. Current situation and future directions of high oleic peanut breeding in China. Shandong Agric Sci, 2018, 50(6):171-176 (in Chinese with English abstract).
[10] Wang C T, Tang Y Y, Wang X Z, Wu Q, Guan S Y, Yang W Q, Wang P W. Development and characterization of four new high oleate peanut lines. Res Crops, 2013, 14:845-849.
[11] 王传堂, 唐月异, 王秀贞, 吴琪, 王志伟, 宫清轩, 冯昊, 杜祖波, 李秋. 高油酸花生新品系丰产性与播种出苗期耐低温高湿田间评价. 山东农业科学, 2019, 51(9):110-114.
Wang C T, Tang Y Y, Wang X Z, Wu Q, Wang Z W, Gong Q X, Feng H, Du Z Q, Li Q. Evaluation on productivity of new high oleic peanut lines and field tolerance to low temperature and high moisture during sowing to emergence period. Shandong Agric Sci, 2019, 51(9):110-114 (in Chinese with English abstract).
[12] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018, 51:1641-1652.
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S. Fast development of high oleate peanut cultivars by using maker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018, 51:1641-1652 (in Chinese with English abstract).
[13] Matos A R, Hourton-Cabassa C, Cicek D, Arrabaca J D, Zachowski A, Moreau F. Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and fad3+ cell suspensions altered in membrane lipid composition. Plant Cell Physiol, 2007, 48:856-865.
pmid: 17507388
[14] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton ( Gossypium hirsutum). J Exp Bot, 2008, 59:2043-2056.
doi: 10.1093/jxb/ern065 pmid: 18453533
[15] Watanabe K, Oura T, Sakai H, Kajiwara S. Yeast Δ 12 fatty acid desaturase: gene cloning, expression, and function. Biosci Biotechnol Biochem, 2004, 68:721-727.
doi: 10.1271/bbb.68.721
[16] 薛晓梦, 李建国, 白冬梅, 晏立英, 万丽云, 康彦平, 淮东欣, 雷永, 廖伯寿. 花生FAD2基因家族表达分析及其低温胁迫的响应. 作物学报, 2019, 45:1586-1594.
Xue X M, Li J G, Bai D M, Yan L Y, Wan L Y, Kang Y P, Huai D X, Lei Y, Liao B S. Expression profiles of FAD2 genes and their responses to cold stress in peanut. Acta Agron Sin, 2019, 45:1586-1594 (in Chinese with English abstract).
[17] 阮建, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英. 花生FAD基因家族的全基因组鉴定与表达模式分析. 山东农业科学, 2018, 50(6):1-9.
Ruan J, Shan L, Li X G, Guo F, Meng J J, Wan S B, Peng Z Y. Genome-wide identification and expression pattern analysis of peanut FAD gene family. Shandong Agric Sci, 2018, 50(6):1-9 (in Chinese with English abstract).
[18] 李春娟, 闫彩霞, 张廷婷, 马超, 单世华. 温度对不同花生品种种子活力的影响. 花生学报, 2012, 41(1):21-25.
Li C J, Yan C X, Zhang Y T, Ma C, Shan S H. Effect of temperature on vigor of peanut seed and quality components. J Peanut Sci, 2012, 41(1):21-25 (in Chinese with English abstract).
[19] 黄金堂, 陈海玲, 李清华, 李淑萍, 谢志琼. 春花生与秋花生种子活力比较研究. 花生学报, 2007, 36(3):30-33.
Huang J T, Chen H L, Li Q H, Li S P, Xie Z Q. The comparative study of seed vigor between spring planted and autumn planted peanuts. J Peanut Sci, 2007, 36(3):30-33 (in Chinese with English abstract).
[20] 钱宗耀, 刘河疆, 张维维, 帕尔哈提. 气质联用-内标法测定豆类中脂肪酸含量及因子分析. 中国粮油学报, 2017, 32(2):130-134.
Qian Z Y, Liu H J, Zhang W W, Pa’erhati. Determination of fatty acids and factor analysis from beans by gas chromatography mass spectrometry using internal standard method. J Chin Cereal Oil Assoc, 2017, 32(2):130-134 (in Chinese with English abstract).
[21] 中华人民共和国国家国家卫生健康委员会. GB 5009.168-2016食品安全国家标准食品中脂肪酸的测定, 2016
National Health Commission of the People’s Republic of China. GB 5009.168-2016 National Food Safety Standard—Determination of Fatty Acid in Foods. 2016 (in Chinese).
[22] 钟鹏, 刘杰, 王建丽, 常博文. 花生对低温胁迫的生理响应及抗寒性评价. 核农学报, 2018, 32:1195-1202.
Zhong P, Liu J, Wang J L, Chang B W. Physiological responses and cold resistance evaluation of peanut under low-temperature stress. J Nucl Agric Sci, 2018, 32:1195-1202 (in Chinese with English abstract).
[23] 杨楠. 黄芪种子脂肪酸在幼苗形态建成中的代谢研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨 2019.
Yang N. The Study on Metabolism of Fatty Acids of Astragalus membranaceus Seeds during Seedling Morphology. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[24] 王允, 刘婷, 张建航, 和小燕, 张幸果, 马立兴, 殷冬梅. 花生种子发育时期脂肪酸积累与降解模式. 中国油料作物学报, 2017, 39:366-371.
Wang Y, Liu T, Zhang J H, He X Y, Zhang X G, Ma L X, Yin D W. Accumulation and degradation pattern of fatty acids during seed development and germination of peanut. Chin J Oil Crop Sci, 2017, 39:366-371 (in Chinese with English abstract).
[25] 王雯怡. FAD2基因家族影响植物油含量差异的分子机制研究. 浙江工业大学硕士学位论文,浙江杭州 2019.
Wang W Y. Understanding the Correlation between FAD2 Gene Family and the Divergence of Vegetable Oil Content in Plants. MS Thesis of Zhejiang University of Technology, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).
[26] 于树涛, 于国庆, 孙泓希, 王虹, 史普想, 于洪波, 王传堂. 气相色谱与近红外技术辅助选育高油酸花生新品种阜花27. 农业科技通讯, 2018, (12):140-141.
Yu S T, Yu G Q, Sun H X, Wang H, Shi P X, Yu H B, Wang C T. Breeding of Fuhua 27, a high peanut variety with high oleic acid content by gas chromatography and near-infrared spectroscopy. Bull Agric Sci Technol, 2018, (12):140-141 (in Chinese).
[27] 于树涛, 于国庆, 于洪波, 王传堂. 高油酸花生新品种阜花22的选育. 辽宁农业科学, 2018, (5):87-88.
Yu S T, Yu G Q, Yu H B, Wang C T. Breeding of Fuhua 22, a peanut variety with high oleic acid content. Liaoning Agric Sci, 2018, (5):87-88 (in Chinese).
[28] 潘丽娟, 王通, 韩鹏, 陈明娜, 陈娜, 王冕, 杨珍, 禹山林, 迟晓元. 高油酸新品种花育917在花生主产区的展示试验. 花生学报, 2019, 48(1):62-65.
Pan L J, Wang T, Han P, Chen M N, Chen N, Wang M, Yang Z, Yu S L, Chi X Y. Experiment performance of high-oleic peanut variety Huayu 917 in the main producing areas of peanut in China. J Peanut Sci, 2019, 48(1):62-65 (in Chinese with English abstract).
[1] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[2] GAO Yun, ZHANG Yu-Xue, MA Quan, SU Sheng-Nan, LI Chun-Yan, DING Jin-Feng, ZHU Min, ZHU Xin-Kai, GUO Wen-Shan. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat [J]. Acta Agronomica Sinica, 2021, 47(1): 104-115.
[3] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[4] XUE Xiao-Meng,LI Jian-Guo,BAI Dong-Mei,YAN Li-Ying,WAN Li-Yun,KANG Yan-Ping,HUAI Dong-Xin,LEI Yong,LIAO Bo-Shou. Expression profiles of FAD2 genes and their responses to cold stress in peanut [J]. Acta Agronomica Sinica, 2019, 45(10): 1586-1594.
[5] Dao-Ping WANG,Jiang XU,Yong-Ying MU,Wen-Xiu YAN,Meng-Jie ZHAO,Bo MA,Qun LI,Li-Na ZHANG,Ying-Hong PAN. Proteomic Analysis of the Effect of 2,4-Epibrassinolide on Rice Seedlings Response to Cold Stress [J]. Acta Agronomica Sinica, 2018, 44(6): 897-908.
[6] HAO Xin-Yuan,YUEChuan,TANG Hu,QIAN Wen-Jun,WANG Yu-Chun,WANG Lu, WANG Xin-Chao,YANG Ya-Jun. Cloning of β-amylase Gene (CsBAM3) and ItsExpression ModelResponseto Cold Stress in Tea Plant [J]. Acta Agron Sin, 2017, 43(10): 1417-1425.
[7] JIAN Hong-Ju,XIAO Yang,LI Jia-Na,MA Zhen-Zhen,WEI Li-Juan,LIU Lie-Zhao. Mappingof QTLs for OilseedGermination RateunderStresses of Salinity and Drought in Brassica napus L. Based on SNP Genetic Map [J]. Acta Agron Sin, 2014, 40(04): 629-635.
[8] CHEN Ji-Bao;JING Rui-Lian;MAO Xin-Guo;CHANG Xiao-Ping;WANG Shu-Min. A Response of PvP5CS2 Gene to Abiotic Stresses in Common Bean [J]. Acta Agron Sin, 2008, 34(07): 1121-1127.
[9] REN Gan;PENG Min;TANG Wei-Jiang; XU Cai-Guo;XING Yong-Zhong. QTL Associated with Seed Aging in Rice [J]. Acta Agron Sin, 2005, 31(02): 183-187.
[10] WANG Sheng-Hua;CHEN Fang;ZHOU Kai-Da. In vitro Pollen Germination of Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2000, 26(05): 609-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!