Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1824-1833.doi: 10.3724/SP.J.1006.2021.04212

• RESEARCH NOTES • Previous Articles     Next Articles

Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean

ZHAO Jing(), MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei*(), YAN Xiao-Yan*()   

  1. National Engineering Research Center of Soybean / Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
  • Received:2020-09-18 Accepted:2021-01-21 Online:2021-09-12 Published:2021-03-01
  • Contact: ZHANG Wei,YAN Xiao-Yan E-mail:zhao114434260@163.com;zw.0431@163.com;yanxy8548@126.com
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000905);Demonstration and Popularization of Modern Agricultural Industrial Technology in Jilin Province(2020-004)

Abstract:

The phosphorus content in soil is closely related to the iron absorption in plant. In this study, 15 agronomic traits were analyzed by principal component analysis in sand culture and split blot design, with P-efficient and P-inefficient soybean varieties screened in the early stage as the experimental materials. To analyze the relationship between agronomic traits and P/Fe utilization efficiency, and to provide the theoretical basis for the rational application of P and Fe fertilizer in soybean, the effects of different P:Fe ratios on biological traits and genotypic differences were studied in response to P-efficient and P-inefficient genotypes under different P:Fe treatments by factor scores in soybean. The results were as follows: (1) At R5 stage, plant height, stem diameter, root dry weight, and shoot dry weight of P-efficient genotypes were increased relatively rapidly under each treatment, and all of them were higher than those of P-inefficient genotypes. When P:Fe ratio was 100:100, root dry weight per plant at R5 stage was lower, while 100-seed weight was higher. In addition, when P:Fe ratio was 100:100, P utilization efficiency of the two soybean genotypes were the lowest. (2) Canonical correlation analysis revealed that stem diameter at R5 stage of P-efficient genotypes was positively correlated with Fe utilization efficiency in leaves, while shoot dry weight of P-inefficient genotypes was negatively correlated with P utilization efficiency in leaves. (3) The increase of P utilization efficiency of leaves at R3 stage and shoot dry weight at R8 stage were beneficial to the increase of seed weight per plant of P-efficient genotypes, while the increase of P-efficient genotypes at R3 stage would lead to the decrease of seed weight per plant of P-efficient genotypes. The increase of plant height at R3 stage, shoot dry weight at R3 and R8 stages contributed to the increase of seed weight per plant of P-inefficient genotypes, while the increase of stem diameter at R3, R5, and R8 stages, and Fe utilization efficiency of leaves at R5 stage resulted in the decrease of seed weight per plant of P-inefficient genotypes. Furthermore, shoot dry weight at R8 stage had the largest direct positive contribution to both P-efficient and P-inefficient genotypes. (4) Comprehensive evaluation by factor score showed that when P:Fe ≤ 100:100, the comprehensive performance of P-efficient genotypes and P- inefficient genotypes were the best when P:Fe ratio was 100:100. When P:Fe ≥ 500:100, the comprehensive performance of P-efficient genotypes and P-inefficient genotypes were the best when P:Fe ratio was 1000:100. In conclusion, the early stage of seed filling can be an important stage for screening soybean genotypes with different P efficiency. P:Fe ratio at 1:1 was better for both P-efficient and P-inefficient genotypes under sufficient Fe supply, considering the accumulation of phosphate fertilizer in soil and effect of phytates in seed on P efficiency.

Key words: P-efficient, P-inefficient, agronomic traits, P utilization efficiency, Fe utilization efficiency

Table 1

Experimental design of main plots"

处理
Treatment
磷浓度
P concentration
(μmol L-1)
磷:铁
P:Fe
CK 0 0:100
P1 100 100:100
P2 500 500:100
P3 1000 1000:100

Fig. 1

Effects of P:Fe ratios on agronomic traits of different soybean genotypes R3: initial podding stage; R5: seed filling stage; R8: maturity stage."

Fig. 2

Effects of P:Fe ratios on P/Fe utilization efficiency of different soybean genotypes R3: initial podding stage; R5: seed filling stage; R8: maturity stage."

Table 2

Canonical correlation analysis of photosynthetic chlorophyll parameters with P and Fe traits under different P:Fe ratios in soybean"

基因型
Genotype
典型相关系数
Canonical correlation coefficient
PP-value 典型向量
Canonical variables
磷高效基因型 P-efficient
genotypes
0.92 0.0145 UE = - 0.1774X1 + 0.3527X2 - 0.5376X3 + 0.6918X4 - 0.8259X5 + 1.6345X6 + 0.3873X7 - 0.5418X8 - 0.3599X9 + 0.0221X10 - 0.7607X11 + 0.8133X12 - 0.0339X13
VE = 0.4051Y1 + 0.6116Y2 - 0.4141Y3 + 0.2499Y4 - 0.3933Y5 + 0.3567Y6
磷低效基因型 P-inefficient
genotypes
0.98 0.0059 UIE = 0.7518X1 - 0.2609X2 - 0.2263X3 - 0.4150X4 - 0.5712X5 + 0.4853X6 - 0.4017X7 + 0.8477X8 + 0.3437X9 + 0.2264X10 - 0.1210X11 - 0.2134X12 + 0.0590X13
VIE = 0.5590Y1 - 0.6724Y2 + 0.0917Y3 - 0.6286Y4 - 0.7682Y5 + 0.6182Y6

Table 3

Stepwise regression equation of grain weight per plant"

基因型
Genotype
回归方程
Regression equation
决定系数
R2
P
P-value
剩余标准差
Residual standard deviation
杜宾-沃森检验
Durbin-Watson test
磷高效基因型
P-efficient genotypes
WE= 1.34 - 0.60X3 + 0.25X12 + 1.02Y4 0.89 1.00E-07 0.0118 2.20
磷低效基因型
P-inefficient genotypes
WIE = 6.84 + 0.027X1- 0.67X2+ 0.22X4 - 0.87X6 - 0.74X10 + 0.24X12- 0.22Y2 0.87 5.41E-06 0.0196 1.62

Table 4

Path analysis of grain weight per plant and traits of P-efficient soybean genotypes"

变量
Variable
直接通径系数
Direct path coefficient
X3 X12 Y4
X3 -0.2481 -0.0755 0.0791
X12 0.9028 0.0208 -0.0083
Y4 0.1610 -0.1220 -0.0465

Table 5

Path analysis between grain weight per plant and all traits of P-inefficient soybean genotypes"

变量
Variable
直接通径系数
Direct path
coefficient
X1 X2 X4 X6 X10 X12 Y2
X1 0.2277 0.1770 0.2169 -0.2246 -0.0942 0.1118 0.0425
X2 -0.4223 0.0954 0.1693 -0.1133 0.0647 -0.1678 0.0080
X4 0.3424 0.1442 -0.2088 -0.1718 -0.1147 0.1520 0.0236
X6 -0.4367 0.1171 -0.1096 0.1347 0.0029 -0.0101 0.0182
X10 -0.4472 0.0479 0.0610 0.0878 0.0029 0.4820 0.0480
X12 0.7848 0.0324 0.0903 0.0663 0.0056 -0.2746 0.0470
Y2 -0.1587 -0.0610 0.0214 -0.0509 0.0501 0.1354 -0.2326

Table 6

Comprehensive evaluation of P-efficient genotypes under different treatments"

处理Treatment 基因型
Genotype
C1 C2 C3 C4 C5 C6 CE ACE
CK 长农15 Changnong 15 -0.543 0.283 0.114 -0.045 -0.022 0.042 -0.171 -0.265
吉育69 Jiyu 69 -0.923 0.392 -0.073 -0.184 0.023 -0.154 -0.919
九农36 Jiunong 36 1.191 -0.432 -0.188 -0.218 0.081 -0.122 0.312
吉农23 Jinong 23 -1.036 -0.340 0.130 -0.112 -0.097 0.056 -1.399
吉育95 Jiyu 95 -0.311 0.135 0.013 -0.058 -0.004 -0.046 -0.270
抗线6号Kangxian 6 0.736 -0.013 0.410 -0.144 -0.069 -0.062 0.857
P1 长农15 Changnong 15 -0.197 0.275 0.399 0.241 0.057 -0.009 0.765 0.127
吉育69 Jiyu 69 -1.117 0.379 0.077 0.071 0.088 -0.036 -0.538
九农36 Jiunong 36 1.149 -0.463 0.318 0.108 0.035 0.065 1.212
吉农23 Jinong 23 -0.742 -0.313 0.232 -0.106 0.034 0.057 -0.838
吉育95 Jiyu 95 0.008 -0.258 0.315 0.032 -0.045 -0.006 0.048
抗线6 Kangxian 6 -0.057 -0.191 0.307 -0.020 0.023 0.053 0.114
P2 长农15 Changnong 15 -0.190 0.517 0.001 0.012 0.025 0.055 0.421 0.019
吉育69 Jiyu 69 -0.538 0.068 0.244 -0.041 -0.080 0.035 -0.312
九农36 Jiunong 36 0.266 -0.396 -0.346 -0.091 0.175 0.003 -0.390
吉农23 Jinong 23 -0.732 -0.199 -0.340 -0.187 0.076 0.128 -1.254
吉育95 Jiyu 95 0.386 0.162 -0.306 0.112 -0.025 0.037 0.365
抗线6 Kangxian 6 0.625 0.047 0.329 0.195 0.147 -0.058 1.285
P3 长农15 Changnong 15 -0.942 0.071 -0.446 0.237 0.024 -0.007 -1.064 0.119
吉育69 Jiyu 69 -0.930 0.194 -0.095 -0.039 -0.167 -0.060 -1.098
九农36 Jiunong 36 1.139 -0.671 -0.142 0.053 -0.143 -0.035 0.202
吉农23 Jinong 23 -0.363 -0.156 -0.461 0.016 -0.023 0.015 -0.973
吉育95 Jiyu 95 0.606 -0.086 -0.341 0.329 -0.082 -0.025 0.402
抗线6号Kangxian 6 2.517 0.996 -0.151 -0.161 -0.032 0.074 3.243

Table 7

Comprehensive evaluation of P-inefficient genotypes under different treatments"

处理 Treatment 基因型
Genotype
C1 C2 C3 C4 C5 C6 C7 CE ACE
CK 合丰25 Hefeng 25 0.040 -0.624 0.120 -0.105 -0.031 -0.045 0.017 -0.628 -0.096
吉农18 Jinong 18 -0.062 -0.891 -0.019 0.052 0.108 -0.041 -0.060 -0.913
欧科豆25 Oukedou 25 0.247 0.237 0.093 0.021 0.116 0.039 -0.002 0.752
九农27 Jiunong 27 0.206 0.879 0.324 -0.021 0.073 -0.070 -0.011 1.379
吉农21 Jinong 21 -0.490 0.384 0.005 -0.218 0.146 -0.073 -0.035 -0.281
绥农22 Suinong 22 0.166 -0.737 -0.193 -0.335 0.166 0.077 -0.028 -0.884
P1 合丰25 Hefeng 25 -0.927 -0.445 0.229 0.224 0.006 0.022 -0.003 -0.895 0.106
吉农18 Jinong 18 0.279 -0.237 0.006 0.159 0.160 0.056 0.028 0.451
欧科豆25 Oukedou 25 -0.317 0.209 -0.116 0.050 0.035 0.006 -0.041 -0.174
九农27 Jiunong 27 1.376 -0.051 0.280 0.102 0.043 -0.098 0.000 1.652
吉农21 Jinong 21 0.428 -0.359 -0.041 0.095 0.061 -0.104 0.010 0.090
绥农22 Suinong 22 -0.837 0.360 -0.177 0.199 0.073 -0.096 -0.009 -0.487
P2 合丰25 Hefeng 25 -0.395 -0.254 -0.006 0.175 -0.121 -0.005 -0.001 -0.607 -0.075
吉农18 Jinong 18 -0.117 0.071 0.227 0.047 0.067 0.253 0.114 0.662
处理 Treatment 基因型
Genotype
C1 C2 C3 C4 C5 C6 C7 CE ACE
欧科豆25 Oukedou 25 -0.304 0.333 0.034 0.018 -0.006 -0.063 0.031 0.043
九农27 Jiunong 27 0.932 -0.035 0.054 -0.186 -0.100 -0.047 0.026 0.646
吉农21 Jinong 21 -0.543 0.424 -0.067 -0.165 0.060 -0.021 -0.030 -0.342
绥农22 Suinong 22 -0.551 0.031 -0.318 -0.048 -0.062 -0.081 0.179 -0.850
P3 合丰25 Hefeng 25 -0.502 -0.469 0.150 -0.073 -0.222 0.058 -0.031 -1.090 0.064
吉农18 Jinong 18 1.439 0.200 -0.542 0.172 -0.037 0.075 -0.022 1.285
欧科豆25 Oukedou 25 -0.272 0.333 -0.059 0.040 -0.109 0.095 -0.163 -0.137
九农27 Jiunong 27 0.907 0.057 0.124 -0.055 -0.231 -0.046 0.004 0.761
吉农21 Jinong 21 0.156 0.585 0.002 -0.091 -0.043 0.138 0.025 0.772
绥农22 Suinong 22 -0.860 0.001 -0.110 -0.057 -0.155 -0.029 0.006 -1.204
[1] Manschadi A M, Kaul H P, Vollmann J, Eitzinger J, Wenzel W. Developing phosphorus-efficient crop varieties: an interdisciplinary research framework. Field Crops Res, 2014, 162:87-98.
doi: 10.1016/j.fcr.2013.12.016
[2] 丁广大, 陈水森, 石磊, 蔡红梅, 叶祥盛. 植物耐低磷胁迫的遗传调控机理研究进展. 植物营养与肥料学报, 2013, 19:733-744.
Ding G D, Chen S S, Shi L, Cai H M, Ye X S. Research advances in genetic regulation mechanism of plant tolerance to low-phosphorus stress. Plant Nutr Fert Sci, 2013, 19:733-744 (in Chinese with English abstract).
[3] 苑乂川, 陈小雨, 李明明, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应. 作物学报, 2019, 45:601-612.
Yuan Y C, Chen X Y, Li M M, Jia Y T, Han Y H, Xing G F. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet. Acta Agron Sin, 2019, 45:601-612 (in Chinese with English abstract).
[4] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46:1984-1993.
Zheng J F, Mi S Y, Jing J J, Bai Z Y, Li C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Sci Agric Sin, 2013, 46:1984-1993 (in Chinese with English abstract).
[5] 林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展. 作物杂志, 2010, (5):5-9.
Lin Z H, Chen R B, Guo S P. Research progress on physiological adaptability of plants to phosphorus deficiency. Crops, 2010, (5):5-9 (in Chinese with English abstract).
[6] 赵婧, 邱强, 张鸣浩, 张伟, 闫晓艳. 植物体内磷铁平衡与缺铁胁迫的关系研究进展. 作物研究, 2016, 30:343-346.
Zhao J, Qiu Q, Zhang M H, Zhang W, Yan X Y. Research progress on the relationship between P-Fe balance and Fe deficiency stress. Crop Res, 2016, 30:343-346 (in Chinese with English abstract).
[7] Sánchez-Rodríguez A R, del Campillo M, Torrent J. The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels. J Sci Food Agric, 2014, 94:2766-2773.
doi: 10.1002/jsfa.2014.94.issue-13
[8] Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky J G, Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana.Plant Cell Physiol, 2005, 46:174-184.
[9] Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud M C. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie, 2006, 88:1767-1771.
pmid: 16757083
[10] Ward J T, Lahner B, Yakubova E, Salt D E, Raghothama K G. The effect of iron on the primary root elongation of Arabidopsisduring phosphate deficiency. Plant Physiol, 2008, 147:1181-1191.
doi: 10.1104/pp.108.118562
[11] Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol, 2009, 25:262-274.
[12] Rothstein S J. Returning to our roots: mating plant biology research relevant to future challenges in agriculture. Plant Cell, 2007, 19:2695-2699.
pmid: 17873097
[13] Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat J F, Gaymard F. Arabidopsisferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. Plant Cell, 2013, 288:22670-22680.
[14] 王贤, 刘晓萌, 杨青春. 磷铁营养对大豆种子铁和植酸积累的影响. 大豆科学, 2010, 29:651-654.
Wang X, Liu X M, Yang Q C. Effects of iron and phosphorus nutrition on the contents of iron and phytic acid in soybean seeds. Soybean Sci, 2010, 29:651-654 (in Chinese with English abstract).
[15] 赵婧, 邱强, 刘庆君, 张鸣浩, 张伟, 闫晓艳. 磷水平对不同铁效率大豆生长和生理特性的影响. 大豆科学, 2016, 35:609-615.
Zhao J, Qiu Q, Liu Q J, Zhang M H, Zhang W, Yan X Y. Effect of phosphorus levels on soybean growth and physiological traits of soybean variety with different iron efficiency. Soybean Sci, 2016, 35:609-615 (in Chinese with English abstract).
[16] Cordell D, Drangert J O, White S. The story of phosphorus: Global food security and food for thought. Global Environ Change, 2009, 19:292-305.
doi: 10.1016/j.gloenvcha.2008.10.009
[17] Dawson C J, Hilton J. Fertilizer availability in a resource limited world: production and recycling of nitrogen and phosphorus. Food Policy, 2011, 36:S14-S22.
doi: 10.1016/j.foodpol.2010.11.012
[18] Zhang Z, Hong L, William J L. Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. J Integr Plant Biol, 2014, 56:192-220.
doi: 10.1111/jipb.12163
[19] García M J, Romera F J, Lucena C, Alcántara E, Pérez-Vicente R. Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol, 2015, 169:51-60.
doi: 10.1104/pp.15.00708 pmid: 26175512
[20] Lucena C, Romera F J, García M J, Alcántara E, Pérez-Vicente R. Ethylene Participates in the regulation of Fe deficiency responses in strategy I plants and in rice. Front Plant Sci, 2015, 6:1237-1251.
[21] Song L, Liu D. Ethylene and plant responses to phosphate deficiency. Front Plant Sci, 2015, 6:796-810.
doi: 10.3389/fpls.2015.00796 pmid: 26483813
[22] Neumann G. The role of ethylene in plant adaptations for phosphate acquisition in soils: a review. Front Plant Sci, 2016, 6:1224-1233.
[23] Rodriguez-Lucena P, Ropero E, Hernandez-Apaolaza L, Lucena J J. Iron supply to soybean plants through the foliar application of IDHA/Fe3+: effect of plant nutritional status and adjuvants. J Sci Food Agric, 2010, 90:2633-2640.
doi: 10.1002/jsfa.v90:15
[24] Fageria N K, Baligar V C, Li Y C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr, 2008, 31:1121-1157.
doi: 10.1080/01904160802116068
[25] Ha S, Tran L S. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol, 2014, 34:16-30.
doi: 10.3109/07388551.2013.783549
[26] Xing D, Wu Y. Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species. Bot Stud, 2014, 55:1-8.
doi: 10.1186/1999-3110-55-1
[27] Veneklaas E J, Lambers H, Bragg J, Finnegan P M, Lovelock C E, Plaxton W C, Price C A, Scheible W, Shane M W, White P J, Raven J A. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol, 2012, 195:306-320.
doi: 10.1111/nph.2012.195.issue-2
[28] Rose T J, Pariasca-Tanaka J, Rose M T, Fukuta Y, Wissuwa M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Res, 2010, 119:154-160.
doi: 10.1016/j.fcr.2010.07.004
[29] Liu X, Glahn R P, Arganosa G C, Warkentin T D. Iron bioavailability in low phytate pea. Crop Sci, 2015, 55:320-330.
doi: 10.2135/cropsci2014.06.0412
[30] Sánchez-Rodríguez A R, del Campillo M C, Torrent J. Phosphate aggravates iron chlorosis in sensitive plants grown on model calcium carbonate-iron oxide systems. Plant Soil, 2013, 373:31-42.
doi: 10.1007/s11104-013-1785-y
[31] Zohlen A. Chlorosis in wild plants: is it a sign of iron deficiency. J Plant Nutr, 2002, 25:2205-2228.
doi: 10.1081/PLN-120014071
[1] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[2] JIA Xiao-Ping,QUAN Jian-Zhang,WANG Yong-Fang,DONG Zhi-Ping,YUAN Xi-Lei,ZHANG Bo,LI Jian-Feng. Effects of different photoperiod conditions on agronomic traits of foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(7): 1119-1127.
[3] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
[4] Yi XU,Lie-Mei ZHANG,Jian-Min QI,Mei SU,Shu-Sheng FANG,Li-Lan ZHANG,Ping-Ping FANG,Li-Wu ZHANG. Correlation Analysis between Yield of Bast Fiber and Main Agronomic Traits in Jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2018, 44(6): 859-866.
[5] Hong JIANG,Shi SUN,Wen-Wen SONG,Cun-Xiang WU,Ting-Ting WU,Shui-Xiu HU,Tian-Fu HAN. Characterization of Growth Period Structure and Identification of E Genes of MGIII Soybean Varieties from Different Geographic Regions [J]. Acta Agronomica Sinica, 2018, 44(10): 1448-1458.
[6] Da-Wei JIAN, Yang ZHOU, Hong-Wei LIU, Li YANG, Chun-Yan MAI, Li-Qiang YU, Xin-Nian HAN, Hong-Jun ZHANG, Hong-Jie LI. Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang [J]. Acta Agronomica Sinica, 2018, 44(05): 657-671.
[7] ZHENG Li-Fei,SHANG Yi-Fei,LI Xue-Jun,FENG Hao,WEI Yong-Sheng. Structural Equation Model for Analyzing Relationshipbetween Yield and Agronomic Traits in Winter Wheat [J]. Acta Agron Sin, 2017, 43(09): 1395-1400.
[8] WANG Xin,MA Ying-Xue,YANG Yang,WANG Dan-Feng,YIN Hui-Juan,WANG Hong-Gang. Identification of Dwarfing Wheat Germplasm SN224 and Analysis of QTLs for Its Agronomic Characters [J]. Acta Agron Sin, 2016, 42(08): 1134-1142.
[9] LUO Jun-Jie,OU Qiao-Ming,YE Chun-Lei,WANG Fang,WANG Yong-Zhen,CHEN Yu-Liang. Comprehensive Valuation of Drought Resistance and Screening of Indices of Important Flax Cultivars [J]. Acta Agron Sin, 2014, 40(07): 1259-1273.
[10] ZHOU Jin-Chao,YANG Xin-Lei,MU Guo-Jun,CUI Shun-Li,HOU Ming-Yu,CHEN Huan-Ying,LIU Li-Feng*. Correlation of SSR Markers with Agronomic Traits in Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2014, 40(07): 1197-1204.
[11] DU Li-Fen,LI Ming-Fei,LIU Lu-Xiang,WANG Chao-Jie,LIU Yang,XU Xi-Tang,ZOU Shu-Fang,XIE Yan-Zhou,WANG Cheng-She. Physiological Characteristics and Genetic Analysis on a Spotted-Leaf Wheat Derived from Chemical Mutation [J]. Acta Agron Sin, 2014, 40(06): 1020-1026.
[12] LIANG Hui-Zhen,YU Yong-Liang,YANG Hong-Qi,ZHANG Hai-Yang,DONG Wei,LI Cai-Yun,GONG Peng-Tao,LIU Xue-Yi,FANG Xuan-Jun. Epistatic Effects and QTL×Environment Interaction Effects of QTLs for Yield and Agronomic Traits in Soybean [J]. Acta Agron Sin, 2014, 40(01): 37-44.
[13] CHEN Yu-Liang,SHI You-Tai,LUO Jun-Jie,LI Zhong-Wang,HOU Yi-Qing,WANG Di. Effect of Drought Stress on Agronomic Traits and Quality and WUE in Different Colored Upland Cotton Cultivars [J]. Acta Agron Sin, 2013, 39(11): 2074-2082.
[14] DONG Jian,YANG Hua,ZHAO Wan-Chun,LI Xiao-Yan,CHEN Qi-Jiao,GAO Xiang. Agronomic Traits and Grain Quality of Chinese Spring–Dasypyrum villosum Translocation Lines T1DL*1VS and T1DS*1VL [J]. Acta Agron Sin, 2013, 39(08): 1386-1390.
[15] CHEN Yu-Liang,SHI You-Tai,LUO Jun-Jie,WANG Di,HOU Yi-Qing,LI Zhong-Wang,ZHANG Bing-Xian. Screening of Drought Tolerant Agronomic Trait Indices of Colored Cotton Varieties (Lines) in Gansu Province [J]. Acta Agron Sin, 2012, 38(09): 1680-1687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!