Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (1): 40-47.doi: 10.3724/SP.J.1006.2022.01103

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Alternative splicing analysis of wheat glutamine synthase genes

WEI Yi-Hao1(), YU Mei-Qin2, ZHANG Xiao-Jiao1, WANG Lu-Lu1, ZHANG Zhi-Yong1, MA Xin-Ming1, LI Hui-Qing2, WANG Xiao-Chun1,2,*()   

  1. 1Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Department of Biochemistry, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2020-12-29 Accepted:2021-04-14 Online:2022-01-12 Published:2021-06-28
  • Contact: WANG Xiao-Chun E-mail:yc_yihao@163.com;xiaochun.w@163.com
  • Supported by:
    National Natural Science Foundation of China(32071956);Agriculture Research System of Henan Province(S2010-01-G04)

Abstract:

As a key enzyme for nitrogen assimilation in plant, glutamine synthetase (TaGS) is encoded by 12 genes in common wheat (Triticum aestivum L.), namely TaGS1;1-6A/6B/6D, TaGS1;2-4A/4B/4D, TaGS1;3-4A/4B/4D, and TaGS2-2A/2B/2D. Transcripts of TaGS genes were obtained using the single molecular sequencing technology, and the results showed that TaGS1;1-6A had one alternative splicing (AS) version of transcripts and TaGS1;1-6B had two AS versions. Compared with the TaGS encoded by normal transcript, TaGS1;1-6A-1 lacked part of the Gln_synt_N domain, and TaGS1;1-6B-3 lacked the Gln_synth_gly_rich_ site domain; TaGS1;1-6B-4 was a new AS event, and encoded a truncated GS without Gln_synth_gly_rich_site and Gln_synth_ cat_dom domain. The relative expression level of TaGS alternative splicing transcripts of wheat cultivars with different nitrogen use efficiencies showed that the relative expression level of TaGS1;1-6A-1 in leaves of YM49 (N-efficient) was significantly higher than that of XN509 (N-inefficient), and increased with the increase of nitrogen supply. In roots, the relative expression of TaGS1;1-6A-1 increased with the increase of nitrogen supply in YM49, but decreased in XN509. TaGS1;1-6B-3 showed a similar expression trend in YM49 and XN509, and high concentration of NO3- promoted the expression of TaGS1;1-6B-3 in leaves while inhibited in roots. High concentration of NH4+ inhibited the expression of TaGS1;1-6B-3 in leaves, but had little effect in roots. TaGS1;1-6B-4 was mainly expressed under low nitrogen condition, and its expression in roots of YM49 was not affected by NH4+ supply. Understanding the AS transcript versions of TaGS genes is helpful to illustrate the functions of TaGS isozymes in nitrogen metabolism of wheat.

Key words: glutamine synthetase, transcription, alternative splicing, wheat, glutamine synthetase, transcription, alternative splicing

Table 1

Composition of nutrient solution with different nitrogen sources (mmol L-1)"

氮含量
Nitrogen content
KH2PO4 MgSO4 KCl CaCl2 Ca(NO3-)2 NH4Cl
N0 0.2 1 1.5 2.5 0 0
0.2 mmol L-1 NO3- 0.2 1 1.5 2.4 0.1 0
2 mmol L-1 NO3- 0.2 1 1.5 1.5 1 0
5 mmol L-1 NO3- 0.2 1 1.5 0 2.5 0
10 mmol L-1 NO3- 0.2 1 1.5 0 5 0
20 mmol L-1 NO3- 0.2 1 1.5 0 10 0
0.2 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 0.2
2 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 2
5 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 5
10 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 10
20 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 20

Table 2

List of primers for RT-PCR"

转录本名称
Transcript name
引物名称
Primer name
引物序列
Primer sequence
(5′-3′)
退火温度
Annealing temperature (℃)
PCR产物长度
PCR fragment
(bp)
TaGS1;1-6A-1 TaGS1;1-6A-1-F GGCCAATACCCATATTTTCACTGTG 60 1199
TaGS1;1-6A-1-R CAGTGGCCACCCACCAAATC
TaGS1;1-6B-3 TaGS1;1-6B-3-F GCCGGAGTTGTCATCGTGG 65 460
TaGS1;1-6B-3-R CAGACACCCTGATGACGACG
TaGS1;1-6B-4 TaGS1;1-6B-4-F CCTCAGTCAGCCGGCCAT 59 708
TaGS1;1-6B-4-R GATGATTACACGACGAGAAGGTAGC
TaTEF1 TaTEF1-F GGTGACAACATGATTGAGAGGTCC 60 678
TaTEF1-R AACAGCCACAGTTTGCCTCATG

Fig. 1

Location of TaGS genes on chromosome in wheat The position shown by the arrows are the chromosomal centromere."

Fig. 1

Location of TaGS genes on chromosome in wheat The position shown by the arrows are the chromosomal centromere."

Table 3

Differences of TaGS transcripts in IWGSC RefSeq v2.0 and the third-generation sequencing"

TaGS同工酶 TaGS isoforms 基因编号
Gene ID
IWGSC RefSeq2.0 第3代测序分析
Third-generation sequencing analysis
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW (kD)
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW
(kD)
CPM*
TaGS1;1 TraesCS6A02G298100 TraesCS6A02G298100.1 349 38.4 TraesCS6A02G298100.1 359 39.7 6.4
TraesCS6A02G298100.2 356 39.2 TraesCS6A02G298100.2 356 39.2 103.5
TraesCS6B02G327500 TraesCS6B02G327500.1 356 39.2 TraesCS6B02G327500.1 356 39.2 154.9
TraesCS6B02G327500.2 325 35.8 0
TraesCS6B02G327500.3 322 35.6 TraesCS6B02G327500.3 322 35.6 7.6
ONT.45646.3 223 24.5 3.8
TraesCS6D02G383600LC TraesCS6D02G383600LC.1 356 39.2 TraesCS6D02G383600LC.1 356 39.2 16
TraesCS6D02G383600LC.2 325 35.8 0
TaGS1;2 TraesCS4A02G063800 TraesCS4A02G063800.1 354 38.7 TraesCS4A02G063800.1 354 38.7 114.6
TraesCS4B02G240900 TraesCS4B02G240900.1 354 38.7 TraesCS4B02G240900.1 354 38.7 134.2
TraesCS4D02G240700 TraesCS4D02G240700.1 354 38.7 TraesCS4D02G240700.1 354 38.7 170
TaGS1;3 TraesCS4A02G266900 TraesCS4A02G266900.1 362 39.6 TraesCS4A02G266900.1 362 39.6 8.8
TraesCS4B02G047400 TraesCS4B02G047400.1 362 39.5 TraesCS4B02G047400.1 362 39.5 3.3
TraesCS4D02G047400 TraesCS4D02G047400.1 362 39.5 TraesCS4D02G047400.1 362 39.5 13
TaGS2 TraesCS2A02G500400 TraesCS2A02G500400.1 427 46.7 TraesCS2A02G500400.1 427 46.7 9.7
TraesCS2A02G500400.2 423 46.09 0
TraesCS2B02G528300 TraesCS2B02G528300.1 423 46.08 0
TraesCS2B02G528300.2 369 40.63 TraesCS2B02G528300.2 427 46.7 53
TraesCS2D02G500600 TraesCS2D02G500600.1 427 46.7 TraesCS2D02G500600.1 427 46.7 27.3

Table 3

Differences of TaGS transcripts in IWGSC RefSeq v2.0 and the third-generation sequencing"

TaGS同工酶 TaGS isoforms 基因编号
Gene ID
IWGSC RefSeq2.0 第3代测序分析
Third-generation sequencing analysis
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW (kD)
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW
(kD)
CPM*
TaGS1;1 TraesCS6A02G298100 TraesCS6A02G298100.1 349 38.4 TraesCS6A02G298100.1 359 39.7 6.4
TraesCS6A02G298100.2 356 39.2 TraesCS6A02G298100.2 356 39.2 103.5
TraesCS6B02G327500 TraesCS6B02G327500.1 356 39.2 TraesCS6B02G327500.1 356 39.2 154.9
TraesCS6B02G327500.2 325 35.8 0
TraesCS6B02G327500.3 322 35.6 TraesCS6B02G327500.3 322 35.6 7.6
ONT.45646.3 223 24.5 3.8
TraesCS6D02G383600LC TraesCS6D02G383600LC.1 356 39.2 TraesCS6D02G383600LC.1 356 39.2 16
TraesCS6D02G383600LC.2 325 35.8 0
TaGS1;2 TraesCS4A02G063800 TraesCS4A02G063800.1 354 38.7 TraesCS4A02G063800.1 354 38.7 114.6
TraesCS4B02G240900 TraesCS4B02G240900.1 354 38.7 TraesCS4B02G240900.1 354 38.7 134.2
TraesCS4D02G240700 TraesCS4D02G240700.1 354 38.7 TraesCS4D02G240700.1 354 38.7 170
TaGS1;3 TraesCS4A02G266900 TraesCS4A02G266900.1 362 39.6 TraesCS4A02G266900.1 362 39.6 8.8
TraesCS4B02G047400 TraesCS4B02G047400.1 362 39.5 TraesCS4B02G047400.1 362 39.5 3.3
TraesCS4D02G047400 TraesCS4D02G047400.1 362 39.5 TraesCS4D02G047400.1 362 39.5 13
TaGS2 TraesCS2A02G500400 TraesCS2A02G500400.1 427 46.7 TraesCS2A02G500400.1 427 46.7 9.7
TraesCS2A02G500400.2 423 46.09 0
TraesCS2B02G528300 TraesCS2B02G528300.1 423 46.08 0
TraesCS2B02G528300.2 369 40.63 TraesCS2B02G528300.2 427 46.7 53
TraesCS2D02G500600 TraesCS2D02G500600.1 427 46.7 TraesCS2D02G500600.1 427 46.7 27.3

Fig. 2

Comparison of gene structure of TaGS alternative splicing"

Fig. 2

Comparison of gene structure of TaGS alternative splicing"

Fig. 3

PCR amplification of TaGS1;1-6A-1, and TaGS1;1-6B-4 transcripts M: marker. The arrow points to the target segment."

Fig. 3

PCR amplification of TaGS1;1-6A-1, and TaGS1;1-6B-4 transcripts M: marker. The arrow points to the target segment."

Fig. 5

Expression of TaGS1;1 alternative splicing transcripts under different nitrogen conditions"

Fig. 5

Expression of TaGS1;1 alternative splicing transcripts under different nitrogen conditions"

Fig. 4

Functional domain of proteins corresponding to transcripts of TaGS"

Fig. 4

Functional domain of proteins corresponding to transcripts of TaGS"

[1] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18:3252-3274.
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18:3252-3274.
[2] Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009, 182:608-620.
Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009, 182:608-620.
[3] Bernard S M, Møller A L B, Dionisio G, Kichey T, Jahn T P, Dubois F, Baudo M, Lopes M S, Tercé-Laforgue T, Foyer C H, Parry M A J, Forde B G, Araus J L, Hirel B, Schjoerring J K, Habash D Z. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67:89-105.
Bernard S M, Møller A L B, Dionisio G, Kichey T, Jahn T P, Dubois F, Baudo M, Lopes M S, Tercé-Laforgue T, Foyer C H, Parry M A J, Forde B G, Araus J L, Hirel B, Schjoerring J K, Habash D Z. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67:89-105.
[4] Thomsen H C, Eriksson D, Møller I S, Schjoerring J K. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci, 2014, 19:656-663.
Thomsen H C, Eriksson D, Møller I S, Schjoerring J K. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci, 2014, 19:656-663.
[5] Syed N H, Kalyna M, Marquez Y, Barta A, Brown J W S. Alternative splicing in plants—coming of age. Trends Plant Sci, 2012, 17:616-623
Syed N H, Kalyna M, Marquez Y, Barta A, Brown J W S. Alternative splicing in plants—coming of age. Trends Plant Sci, 2012, 17:616-623
[6] 郎丹莹, 吕庚寅, 梁广旺, 李瑞航, 郭晓光, 徐虹, 郭蔼光. 小麦UROS基因的可变剪接. 麦类作物学报, 2016, 36:1553-1562.
郎丹莹, 吕庚寅, 梁广旺, 李瑞航, 郭晓光, 徐虹, 郭蔼光. 小麦UROS基因的可变剪接. 麦类作物学报, 2016, 36:1553-1562.
Lang D Y, Lyu G Y, Liang G W, Li R H, Guo X G, Xu H, Guo K G. Alternative splicing of uroporphyrinogen III synthase genes in wheat. J Wheat Crops, 2016, 36:1553-1562 (in Chinese with English abstract).
Lang D Y, Lyu G Y, Liang G W, Li R H, Guo X G, Xu H, Guo K G. Alternative splicing of uroporphyrinogen III synthase genes in wheat. J Wheat Crops, 2016, 36:1553-1562 (in Chinese with English abstract).
[7] 关海英, 何春梅, 王娟, 刘铁山, 董瑞, 刘春晓, 刘强, 汪黎明. 玉米ZmcpSRP54基因可变剪接分析. 山东农业科学, 2019, 51(6):1-9.
关海英, 何春梅, 王娟, 刘铁山, 董瑞, 刘春晓, 刘强, 汪黎明. 玉米ZmcpSRP54基因可变剪接分析. 山东农业科学, 2019, 51(6):1-9.
Guan H Y, He C M, Wang J, Liu T S, Dong R, Liu C X, Liu Q, Wang L M. Alternative splicing analysis of ZmcpSRP54 gene in maize. Shandong Agric Sci, 2019, 51(6):1-9 (in Chinese with English abstract).
Guan H Y, He C M, Wang J, Liu T S, Dong R, Liu C X, Liu Q, Wang L M. Alternative splicing analysis of ZmcpSRP54 gene in maize. Shandong Agric Sci, 2019, 51(6):1-9 (in Chinese with English abstract).
[8] 邢永强, 刘国庆, 蔡禄. Pre-mRNA选择性剪接的调控及选择性剪接数据库. 中国生物化学与分子生物学报, 2016, 32:17-28.
邢永强, 刘国庆, 蔡禄. Pre-mRNA选择性剪接的调控及选择性剪接数据库. 中国生物化学与分子生物学报, 2016, 32:17-28.
Xing Y Q, Liu G Q, Cai L. Regulation and database of pre-mRNA alternative splicing. Chin J Biochem Mol Biol, 2016, 32:17-28 (in Chinese with English abstract).
Xing Y Q, Liu G Q, Cai L. Regulation and database of pre-mRNA alternative splicing. Chin J Biochem Mol Biol, 2016, 32:17-28 (in Chinese with English abstract).
[9] Dubrovina A S, Kiselev K V, Zhuravlev Y N. The role of canonical and noncanonical pre-mRNA splicing in plant stress responses. BioMed Res Intl, 2013, 2013:264314.
Dubrovina A S, Kiselev K V, Zhuravlev Y N. The role of canonical and noncanonical pre-mRNA splicing in plant stress responses. BioMed Res Intl, 2013, 2013:264314.
[10] Kwon Y J, Park M J, Kim S G, Baldwin I T, Park C M. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol, 2014, 14:136.
Kwon Y J, Park M J, Kim S G, Baldwin I T, Park C M. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol, 2014, 14:136.
[11] Tiwari B, Habermann K, Arif M A, Weil H L, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC Plant Biol, 2020, 20:298.
Tiwari B, Habermann K, Arif M A, Weil H L, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC Plant Biol, 2020, 20:298.
[12] Reddy A S N, Ali G S. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. WIRES RNA, 2011, 2:875-889.
Reddy A S N, Ali G S. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. WIRES RNA, 2011, 2:875-889.
[13] Barbazuk W B, Fu Y, McGinnis K M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res, 2008, 18:1381-1392.
Barbazuk W B, Fu Y, McGinnis K M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res, 2008, 18:1381-1392.
[14] Filichkin S A, Priest H D, Givan S A, Shen R, Bryant D W, Fox S E, Wong W K, Mockler T C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 2010, 20:45-58.
Filichkin S A, Priest H D, Givan S A, Shen R, Bryant D W, Fox S E, Wong W K, Mockler T C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 2010, 20:45-58.
[15] 任毅鹏, 张佳庆, 孙瑜, 吴振峰, 阮吉寿, 贺秉军, 刘国卿, 高山, 卜文俊. 基于PacBio平台的全长转录组测序. 科学通报, 2016, 61:1250-1254.
任毅鹏, 张佳庆, 孙瑜, 吴振峰, 阮吉寿, 贺秉军, 刘国卿, 高山, 卜文俊. 基于PacBio平台的全长转录组测序. 科学通报, 2016, 61:1250-1254.
Ren Y P, Zhang J Q, Sun Y, Wu Z F, Ruan J S, He B J, Liu G Q, Gao S, Bu W J. Full-length transcriptome sequencing on PacBio platform. Chin Sci Bull, 2016, 61(11):1250-1254 (in Chinese with English abstract).
Ren Y P, Zhang J Q, Sun Y, Wu Z F, Ruan J S, He B J, Liu G Q, Gao S, Bu W J. Full-length transcriptome sequencing on PacBio platform. Chin Sci Bull, 2016, 61(11):1250-1254 (in Chinese with English abstract).
[16] 张得芳, 马秋月, 尹佟明, 夏涛. 第三代测序技术及其应用. 中国生物工程杂志, 2013, 33(5):125-131.
张得芳, 马秋月, 尹佟明, 夏涛. 第三代测序技术及其应用. 中国生物工程杂志, 2013, 33(5):125-131.
Zhang D F, Ma Q Y, Yin D M, Xia T. The third generation sequencing technology and its application. Chin J Biol Engineer, 2013, 33(5):125-131 (in Chinese with English abstract).
Zhang D F, Ma Q Y, Yin D M, Xia T. The third generation sequencing technology and its application. Chin J Biol Engineer, 2013, 33(5):125-131 (in Chinese with English abstract).
[17] 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析. 作物学报, 2021, 47:761-769.
王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析. 作物学报, 2021, 47:761-769.
Wang X C, Wang L L, Zhang Z Y, Qin B T, Yu M Q, Wei Y H, Ma X M. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters. Acta Agron Sin, 2021, 47:761-769 (in Chinese with English abstract).
Wang X C, Wang L L, Zhang Z Y, Qin B T, Yu M Q, Wei Y H, Ma X M. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters. Acta Agron Sin, 2021, 47:761-769 (in Chinese with English abstract).
[18] Wei Y, Wang X, Zhang Z, Xiong S, Meng X, Zhang J, Wang L, Zhang X, Yu M, Ma X. Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat (Triticum aestivum L.). Int J Mol Sci, 2020, 21:6299.
Wei Y, Wang X, Zhang Z, Xiong S, Meng X, Zhang J, Wang L, Zhang X, Yu M, Ma X. Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat (Triticum aestivum L.). Int J Mol Sci, 2020, 21:6299.
[19] Llorca O, Betti M, González J M, Valencia A, Márquez A J, Valpuesta J M. The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. J Struct Biol, 2006, 156:469-479.
Llorca O, Betti M, González J M, Valencia A, Márquez A J, Valpuesta J M. The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. J Struct Biol, 2006, 156:469-479.
[20] Torreira E, Seabra A R, Marriott H, Zhou M, Llorca Ó, Robinson C V, Carvalho H G, Fernández-Tornero C, Pereira P J. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture. Acta Crystallogr D, 2014, 70:981-993.
Torreira E, Seabra A R, Marriott H, Zhou M, Llorca Ó, Robinson C V, Carvalho H G, Fernández-Tornero C, Pereira P J. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture. Acta Crystallogr D, 2014, 70:981-993.
[21] Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M. Atomic structure of plant glutamine synthetase—a key enzyme for plant productivity. J Biol Chem, 2006, 281:29287-29296.
Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M. Atomic structure of plant glutamine synthetase—a key enzyme for plant productivity. J Biol Chem, 2006, 281:29287-29296.
[22] Wang X, Wei Y, Shi L, Ma X, Theg S M. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). J Exp Bot, 2015, 66:6827-6834.
Wang X, Wei Y, Shi L, Ma X, Theg S M. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). J Exp Bot, 2015, 66:6827-6834.
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[4] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[5] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[6] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[7] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[8] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[9] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[10] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[11] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[12] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[13] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[14] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[15] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!