Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1721-1729.doi: 10.3724/SP.J.1006.2022.11045

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Identification on sensitivity of wheat to low temperature at reproductive stages

WANG Juan(), LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong()   

  1. National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-04-23 Accepted:2021-11-29 Online:2022-07-12 Published:2021-12-13
  • Contact: SUN Guo-Zhong E-mail:wj_1714661899@163.com;sunguozhong@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100703);Fundamental Research Funds for Central Public Welfare Research Institutes(S2020YC03);China Agriculture Research System(CARS-03)

Abstract:

Spring freezing injury caused by the low temperature at the reproductive stage is one of the natural disasters that seriously threaten the safety of wheat production in China. Spring wheat cultivar Zhongmai 8444 was employed to accurately determine the correlation between low-temperature damage and the sensitive stages of plant development under the controlled condition. Yield loss and the symptoms of frostbite were observed when plants were treated with freezing stress during the spike differentiation stage. The results showed that the developmental leaf age is relevant to the young spike differentiation stage in wheat plants. In addition, the degree of frost damage to the stems and leaves of wheat plants increased with the decrease of temperature and the developmental processes. In contrast, the plant height, spike length, and seed setting rate declined with a decrease in temperature and developmental processes. The late double ridge phase (S2.25) to floret primordia differentiation phase (S3.5) and the anther connective tissue formation phase (S5) to stigma branches protuberance phase (S7) are the two stages that change significantly to low-temperature sensitivity during the young spike development. Based on the tolerance of stems, leaves, spikes, and other organs to low temperature, the meiotic stage can be used to comprehensively evaluate the resistance level of wheat to frost in spring.

Key words: wheat, reproductive development, sensitivity to low temperature, meiosis stage

Fig. 1

LED spectrum at seedling and heading stages in wheat A: seedling stage; B: heading stage."

Fig. 2

Leaf ages of wheat plant at different sowing dates The developmental stages of wheat plants at seven sowing dates according to the Zadoks decimal code, bar: 10 cm. T1: 3 leaves unfolded (GS13); T2: 4 leaves unfolded (GS14); T3: 4 leaves unfolded and 5th leaf less than half visible (GS14.5); T4: 5 leaves unfolded (GS15); T5: 6 leaves unfolded (GS16); T6: 7 leaves unfolded (GS17, AD = 0.5-1.0 cm); T7: 7 leaves unfolded (GS17, AD = 4-5 cm). AD: auricle distances, leaf-occipital distance."

Fig. 3

Spike differentiation phases of wheat plant at different sowing dates The spike differentiation phase of wheat plants at seven sowing dates according to the Wadington scale, bar: 100 μm. T1: late double ridge phase (S2.25); T2: floret primordia differentiation phase (S3.5); T3: pistil and stamen primordia differentiation phase (S4.25); T4: anther connective tissue formation phase (S5); T5: stigma branches protuberance phase (S7); T6: stigma branches elongation phase (S8); T7: stigma branches formation phase (S9)."

Fig. 4

Freezing injury of wheat plants at different developmental stages after low temperature stress The photos were taken after 36 h of growth at room temperature. Bar: 10 cm. A: 22℃ (CK); B: 0℃; C: -2.5℃; D: -3.5℃."

Table 1

Freezing damage of wheat plants caused by low temperature stress during spike development period"

穗发育阶段
Developmental phase of spike
小麦植株冻害情况 Freezing damage of wheat plants
0℃ -2.5℃ -3.5℃
二棱末期
Late double ridge
无症状
No symptoms
无症状
No symptoms
新生叶片存活
Survival of new leaves
小花原基分化期
Floret primordia differentiation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
新生叶片存活
Survival of new leaves
雌雄蕊原基分化期
Pistil and stamen primordia differentiation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
新生叶片存活
Survival of new leaves
药隔期
Anther connective tissue formation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
新生叶片存活
Survival of new leaves
柱头羽毛突起期
Stigma branches protuberance
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
主茎冻死率44%
Freeze death rate of main stem is 44%
柱头羽毛伸长期
Stigma branches elongation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
主茎冻死率60%
Freeze death rate of main stem is 60%
柱头羽毛形成期
Stigma branches formation
无症状
No symptoms
基部叶呈现萎蔫、失绿
Lower leaves wilted and chlorosis
主茎冻死率67%
Freeze death rate of main stem is 67%

Table 2

Effects of low temperature stress on plant height, spike length, and seed-setting rate of wheat plants at different spike differentiation stages"

处理
Treatment
穗发育阶段
Differentiation stage of spike
温度
Temperature
(℃)
株高
Plant height
(cm)
降幅
Percentage of reduce (%)
穗长
Spike length (cm)
降幅Percentage of reduce 结实率
Seed-setting rate
(%)
降幅
Percentage of reduce (%)
CK 45.01±2.47 5.60±0.28 65.45±4.92
T1 二棱末期
Late double ridge
0 44.36±1.74 1.44 5.33±0.68 4.82 64.62±9.93 1.27
‒2.5 43.78±3.14 2.73 5.30±0.21 5.36 63.28±9.93 3.32
‒3.5 42.98±2.22 4.51 4.53±0.30** 19.11 56.55±6.83* 13.60
T2 小花原基分化期
Floret primordum differentiation
0 44.16±2.26 1.89 5.32±0.34 5.00 60.18±7.17 8.05
‒2.5 43.50±2.39 3.35 5.30±0.35 5.36 59.25±6.14 9.47
‒3.5 38.30±2.61** 14.91 4.48±0.66** 20.00 48.57±4.22** 25.79
T3 雌雄蕊原基分化期
Pistil and stamen
primordum differentiation
0 43.80±2.97 2.69 5.35±0.32 4.46 58.34±2.91 10.86
‒2.5 42.34±3.69 5.93 5.38±0.40 3.93 55.95±8.40 14.51
‒3.5 36.07±4.15** 19.86 4.13±0.58** 26.25 44.02±6.52** 32.74
T4 药隔期
Anther connective tissue formation
0 44.09±1.43 2.04 5.50±0.27 1.79 62.80±5.88 4.05
‒2.5 44.08±3.01 2.07 5.36±0.40 4.29 56.19±10.98* 14.15
‒3.5 38.08±3.51** 15.40 4.60±0.27** 17.86 46.93±2.50** 28.30
T5 柱头羽毛突起期
Stigmatic branches protuberance
0 43.68±1.82 2.95 5.47±0.35 2.32 62.38±6.57 3.00
‒2.5 43.55±2.70 3.24 5.25±0.25 6.25 58.64±4.78 6.00
‒3.5 33.82±8.57** 24.86 5.06±0.52** 9.64 50.81±12.14**# 22.37
T6 柱头羽毛伸长期
Stigmatic branches elongating
0 44.18±2.20 1.84 5.50±0.37 1.79 61.89±7.79 5.44
‒2.5 44.83±0.57 0.39 5.25±0.35 6.25 59.76±4.79 8.69
‒3.5 29.50±4.24** 34.46 5.10±0.28** 8.93 49.30±8.44**# 24.68
T7 柱头羽毛形成期
Stigmatic branches formation
0 42.30±2.50* 6.00 5.19±0.43* 7.32 57.36±10.63* 12.36
‒2.5 40.25±4.53** 10.58 5.16±0.43** 7.86 50.51±2.80** 22.83
‒3.5 30.10±0.43** 33.11 4.97±0.32** 11.25 46.53±3.92**# 28.91
[1] Li H J, Zhou Y, Xin W L, Wei Y Q, Zhang J L, Guo L L. Wheat breeding in northern China: achievements and technical advances. Crop J, 2019, 7: 718-729.
doi: 10.1016/j.cj.2019.09.003
[2] 肖世和主编. 中国小麦产业技术发展报告. 北京: 中国农业出版社, 2015. p 509.
Xiao S H (ed). Technical Development Report of Wheat Industry in China. Beijing: China Agriculture Press, 2015. p 509 (in Chinese).
[3] Zhong X, Mei X, Li Y, Yoshida H, Zhao P, Wang X, Han L, Hu X, Huang S, Huang J, Sun Z. Changes in frost resistance of wheat young ears with development during jointing stage. J Agron Crop Sci, 2008, 194: 343-349.
doi: 10.1111/j.1439-037X.2008.00320.x
[4] 欧行奇, 王玉玲. 黄淮南片麦区小麦耐倒春寒育种研究初探. 麦类作物学报, 2019, 39: 560-566.
Ou X Q, Wang Y L. Preliminary study on wheat breeding for late spring cold tolerance in Southern Huang Huai Region. J Triticeae Crops, 2019, 39: 560-566. (in Chinese with English abstract)
[5] 吴青霞, 杨林, 邵慧, 冉从福, 杨子博, 余静, 李立群, 李学军. 药隔期低温胁迫对小麦生理及产量的影响. 麦类作物学报, 2013, 33: 752-757.
Wu Q X, Yang L, Shao H, Ran C F, Yang Z B, Yu J, Li L Q, Li X J. Effects of low temperature stress on wheat physiology and yield during drug interval. J Triticeae Crops, 2013, 33: 752-757. (in Chinese with English abstract)
[6] 刘方方, 万映秀, 曹文昕, 张琪琪, 李耀, 李炎, 张平治. 小麦倒春寒抗性鉴定及分子机制研究进展. 植物遗传资源学报, 2021, 22: 1193-1199.
Liu F F, Wan Y X, Cao W X, Zhang Q Q, Li Y, Li Y, Zhang P Z. Advances on identification and molecular basis of wheat cold tolerance in spring. J Plant Genet Resour, 2021, 22: 1193-1199. (in Chinese with English abstract)
[7] Paulsen G M, Heyne E G. Grain production of winter wheat after spring freeze injury. Agron J, 1983, 75: 705-707.
doi: 10.2134/agronj1983.00021962007500040031x
[8] Zheng B, Chapman S C, Christopher J T, Frederiks T M, Chenu K. Frost trends and their estimated impact on yield in the Australian wheatbelt. J Exp Bot, 2015, 66: 3611-3623.
doi: 10.1093/jxb/erv163
[9] Frederiks T M, Christopher J T, Borrell A K. Low temperature adaption of wheat post head-emergence in northern Australia. In:Appels R, Eastwood R, Lagudah E, Langridge P, Mackay-Lynne M, eds. The 11th International Wheat Genetics Symposium Proceedings. Sydney University Press 2008. pp 2-3.
[10] Cheong B E, William W H H, Biddulph B, Wallace X, Rathjen T, Rupasinghe T W T, Roessner U, Dolferus R. Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics, 2019, 15: 144.
doi: 10.1007/s11306-019-1606-2 pmid: 31630279
[11] Gusta L V, Wisniewski M. Understanding plant cold hardiness: an opinion. Physiol Plant, 2013, 147: 4-14.
doi: 10.1111/j.1399-3054.2012.01611.x
[12] Frederiks T M, Christopher J T, Sutherland M W, Borrell A K. Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance. J Exp Bot, 2015, 66: 3487-3498.
doi: 10.1093/jxb/erv088 pmid: 25873656
[13] Subedi K D, Gregory P J, Summerfield R J, Gooding M J. Cold temperatures and boron deficiency caused grain set failure in spring wheat (Triticum aestivum L.). Field Crops Res, 1998, 57: 277-288.
doi: 10.1016/S0378-4290(97)00148-2
[14] Thakur P, Kumar S, Malik J A, Berger J D, Nayyar H. Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot, 2010, 67: 429-443.
doi: 10.1016/j.envexpbot.2009.09.004
[15] 张自阳, 王智煜, 王斌, 王志伟, 朱启迪, 霍云风, 茹振钢, 刘明久. 春季穗分化阶段低温处理对不同小麦品种幼穗结实性及生理特性的影响. 华北农学报, 2019, 34(4): 130-139.
Zhang Z Y, Wang Z Y, Wang B, Wang Z W, Zhu Q D, Huo Y F, Ru Z G, Liu M J. Effects of low temperature treatment on young spike setting and physiological characteristics of different wheat varieties at spike differentiation stage in spring. Acta Agric Boreali-Sin, 2019, 34(4): 130-139. (in Chinese with English abstract)
[16] 吉田久. 麦の冻上害と冻霜害. 农林水产研究文献解题, 2000, 23: 305-317.
Yoshida J. Frost damage on wheat. Sol Agric For Aquat Res Lit, 2000, 23: 305-317. (in Japanese)
[17] 胡新, 黄绍华.晚霜冻害与小麦品种的关系:1998年霜冻害调查报告之一. 中国农业气象, 1999, 20(3): 28-30.
Hu X, Huang S H. Relationships between late frost damage and wheat varieties:a report of frost damage investigation in 1998Agromet China, 1999, 20(3): 28-30. (in Chinese with English abstract)
[18] 曾正兵, 钟秀丽, 王道龙, 郭金耀, 赵鹏, 王晓光, 韩立帅. 冬小麦拔节后幼穗低温敏感期的鉴定. 自然灾害学报, 2006, 15(6): 297-300.
Zeng Z B, Zhong X L, Wang D L, Guo J Y, Zhao P, Wang X G, Han L S. Identification of young ear’s low temperature sensitive phase after jointing stage of winter wheat. J Nat Disasters, 2006, 15(6): 297-300. (in Chinese with English abstract)
[19] 李晓林, 白志元, 杨子博, 王培, 钟丽洁, 李学军. 黄淮麦区部分主推冬小麦品种越冬及拔节期的抗寒生理研究. 西北农林科技大学学报(自然科学版), 2013, 41(1): 40-48.
Li X L, Bai Z Y, Yang Z B, Wang P, Zhong L J, Li X J. Cold resistant physiology of some main wheat varieties at wintering and jointing stages in Huanghuai area. J Northwest Univ Agric For Sci Technol (Nat Sci Edn), 2013, 41(1): 40-48. (in Chinese with English abstract)
[20] Díaz M L, Soresi D S, Basualdo J, Cuppari S J, Carrera A. Transcriptomic response of durum wheat to cold stress at reproductive stage. Mol Biol Rep, 2019, 46: 2427-2445.
doi: 10.1007/s11033-019-04704-y
[21] Shroyer J P, Mikesell M E, Paulsen G M. Spring Freeze Injury to Kansas Wheat. Kansas State University Publications, Manhattan, USA, 1995. p 12.
[22] 薛辉, 余慷, 马晓玲, 刘晓丹, 宋艳红, 朱保磊, 刘冬成, 张爱民, 詹克慧. 黄淮麦区小麦品种耐倒春寒相关性状的评价及关联分析. 麦类作物学报, 2018, 38: 1174-1188.
Xue H, Yu K, Ma X L, Liu X D, Song Y H, Zhu B L, Liu D C, Zhang A M, Zhan K H. Evaluation and association analysis of related traits of wheat varieties resistant to late spring cold in Huanghuai Wheat Region. J Triticeae Crops, 2018, 38: 1174-1188. (in Chinese with English abstract)
[23] Frederiks T M, Christopher J T, Harvey G L, Sutherland M W, Borrell A K. Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley. J Exp Bot, 2012, 63: 5405-5416.
doi: 10.1093/jxb/ers215 pmid: 22888127
[24] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和. 春季低温对小麦产量和光合特性的影响. 作物学报, 2018, 44: 288-296.
Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H. Effects of low temperature on wheat yield and photosynthetic characteristics in spring. Acta Agron Sin, 2018, 44: 288-296. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00288
[25] Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Res, 1974, 14: 415-421.
doi: 10.1111/j.1365-3180.1974.tb01084.x
[26] Waddington S R, Cartwright P M, Wall P C. A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot, 1983, 51: 119-130.
doi: 10.1093/oxfordjournals.aob.a086434
[27] Cheong B E, Onyemaobi O, Wing H H W, Biddulph T B, Rupasinghe T W T, Roessner U, Dolferus R. Phenotyping the chilling and freezing responses of young microspore stage wheat spikes using targeted metabolome and lipidome profiling. Cells, 2020, 9: 1309.
doi: 10.3390/cells9051309
[28] 崔金梅, 郭天财. 小麦的穗 北京:中国农业出版社, 2007. pp 18-54.
Cui J M, Guo T C. Spike of Wheat. Beijing: China Agriculture Press, 2007. pp 18-54. (in Chinese)
[29] Bomblies K, Higgins J D, Yant L. Meiosis evolves: adaptation to external and internal environments. New Phytol, 2015, 208: 306-323.
doi: 10.1111/nph.13499 pmid: 26075313
[30] 高芸, 张玉雪, 马泉, 苏盛楠, 李春燕, 丁锦峰, 朱敏, 朱新开, 郭文善. 春季低温对小麦花粉育性及粒数形成的影响. 作物学报, 2021, 47: 104-115.
doi: 10.3724/SP.J.1006.2021.01031
Gao Y, Zhang Y X, Ma Q, Su S G, Li C Y, Ding J F, Zhu M, Zhu X K, Guo W S. Effects of low temperature in spring on pollen fertility and grain number formation of wheat. Acta Agron Sin, 2021, 47: 104-115. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01031
[31] Zhang W, Wang J, Huang Z, Mi L, Xu K, Wu J, Fan Y, Ma S, Jiang D. Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Front Plant Sci, 2019, 10: 498.
doi: 10.3389/fpls.2019.00498
[32] Barton D A, Cantrill L C, Law A M, Phillips C G, Sutton B G, Overall R L. Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L. Plant Cell Environ, 2014, 37: 2781-2794.
doi: 10.1111/pce.12358
[33] Draeger T, Moore G. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2017, 130: 1785-1800.
doi: 10.1007/s00122-017-2925-1 pmid: 28550436
[34] Barlowa K M, Christya B P, O’Leary G J, Riffkinc P A, Nuttall J G. Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crops Res, 2015, 171: 109-119.
doi: 10.1016/j.fcr.2014.11.010
[35] Do R A, Çak R H. Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Func Plant Biol, 2020, 47: 250-262.
doi: 10.1071/FP19200
[1] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[2] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[3] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[4] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[5] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[6] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[7] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[8] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[9] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[10] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[13] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[14] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[15] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .