Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 321-331.doi: 10.3724/SP.J.1006.2023.24013

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L.

ZHANG Wen-Xuan(), LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2022-01-10 Accepted:2022-06-07 Online:2022-07-08 Published:2022-07-08
  • Contact: MA Chao-Zhi E-mail:18645272827@163.com;yuanbeauty@mail.hzau.edu.cn
  • Supported by:
    Fundamental Research Funds for the Central Universities(2662020ZKPY020);National Key Research and Development Program of China(2020BBB061)

Abstract:

Brassica napus L. is an important oil crop. MPK6 (Mitogen-Activated Protein Kinases 6) is activated by various stresses to control plant stress tolerance, which is the key gene in response to abiotic stresses. However, the function of MAPK6 in B. napus stress tolerance is still unclear. Gene structure and protein sequence analysis showed that MPK6gene structures were similar, and all proteins had the same STKc_TEY_MAPK domain in Brassica. To explore the potential role of BnaMPK6, the BnaMPK6 mutants were generated by CRISPR/Cas9 genome editing technology. Two quadruple mutants, cr-bnampk6-13-1 and cr-bnampk6-49-1, were obtained. cr-bnampk6 mutant lines were hypersensitive to salt treatment (100 mmol L-1 and 150 mmol L-1), the growth of the mutant was strongly inhibited after salt treatment, and the plant height and fresh weight were significantly lower than those of wild-type plants, but there was no significant difference in root length. In addition, reactive oxygen species (ROS), malondialdehyde (MDA), and free proline were more accumulated in cr-bnampk6 mutant lines. In conclusion, these results revealed that BnaMPK6 gene positively regulated salt tolerance in B. napus, providing theoretical and technical supports for genetic improvement of salt tolerance in Brassica napus.

Key words: Brassica napus L., BnaMPK6, CRISPR/Cas9, salt stress

Table 1

Sequence of qRT-PCR primers"

基因名称
Gene name
引物名称
Primer name
序列
Sequence (5'-3')
BnaC03T0189300WE BnaMPK6.C03-F GCCGGGGAAAGAGAATATTC
BnaMPK6.C03-R ATCGGAGGGTTATACTTAGCGGT
BnaA03T0226400WE BnaMPK6.A03-F CGACACTTAGCCATGGAGGGATGT
BnaMPK6.A03-R ATCGGAGGGCTATACTTGGCG
BnaC04T0043400WE BnaMPK6.C04-F GGGGTAGAGAATATTCCGGC
BnaMPK6.C04-R AACAGACGATGCCATAAGCGCCT
BnaA05T0030700WE BnaMPK6.A05-F CCGAGAGTGACTTTATGACTGA
BnaMPK6.A05-R CTTTGCGTTTTCGTTCAAGAAC
BnaActin7 actinQ7F GCTGACCGTATGAGCAAAG
actinQ7R AAGATGGATGGACCCGAC

Table 2

Sequence of HI-TOM primers"

基因名称
Gene name
引物名称
Primer name
序列
Sequence (5'-3')
BnaC03T0189300WE sgRNA1-C3-F ggagtgagtacggtgtgcACTGCGGCGATAGATGTTTGG
sgRNA1-C3-R gagttggatgctggatggACAGCATCAAATAGAGCTTCAAAGGT
BnaA03T0226400WE sgRNA1-A3-F ggagtgagtacggtgtgcACTGCGGCGATAGATGTTTGG
sgRNA1-A3-R gagttggatgctggatggCAGCAAAATACGAGTCTTTGTTGGT
BnaC04T0043400WE sgRNA2-C4-F ggagtgagtacggtgtgcGCTTGAGTTCTTGAACGAAAACGC
sgRNA2-C4-R gagttggatgctggatggTCAAACGTCAGCATCTTCTCGATAAG
BnaA05T0030700WE sgRNA2-A5-F ggagtgagtacggtgtgcGCTTGAGTTCTTGAACGAAAACGC
sgRNA2-A5-R gagttggatgctggatggTCAAACGTCAGCATCTTCTCGATAAG

Fig. 1

Phylogenetic relationships and gene structure of MPK6 genes in Arabidopsis thaliana, Brassica napus, Brassica rapa, and Brassica oleracea"

Fig. 2

Protein sequence and conserved domain of MPK6 in Arabidopsis thaliana, Brassica napus L., Brassica rapa, and Brassica oleracea"

Fig. 3

Expression patterns of BnaMPK6 gene A: the relative expression patterns of BnaMPK6 genes in four different tissues; B, C: the relative expression pattern of BnaMPK6 genes under different salt treatment time. The data was calculated in the light of the 2-ΔΔCt method and the mRNA levels of Actin genes set to 200. 0 hour is used as control, the asterisk (*) are significantly different (t-test: *, P < 0.05)."

Fig. 4

Editing results of cr-bnampk6 mutants A: the visualization of BnaMPK6 gene structure and the target sites; B: the mutation of targeted sites of BnaMPK6 homoulogous in cr-bnampk6 T1 plants; C: the partial editing results of T0 and T1 generation of cr-bnampk6. The blue parts indicate mutations; the red and green parts indicate target sites. d#: # of bp deleted from target site; i#: # of bp inserted from target site; wt: wild type."

Table 3

Analysis of phenotypic of cr-bnampk6 under different concentrations of NaCl solution"

处理
Treatment
表型
Phenotype
野生型
WT
13-1 49-1
0 mmol L-1 NaCl 株高 Stem length (cm) 21.307±0.488 a 22.145±0.485 a 20.925±0.641 a
根长 Root length (cm) 30.547±1.649 a 27.855±0.805 a 29.300±1.199 a
鲜重 Fresh weight (g) 6.925±0.141 a 7.014±0.197 a 6.629±0.178 a
100 mmol L-1 NaCl 株高 Stem length (cm) 16.190±0.569 a 13.610±0.549 b 11.620±0.53 c
根长 Root length (cm) 24.428±1.018 a 25.155±0.683 a 26.700±0.837 a
鲜重 Fresh weight (g) 4.425±0.095 a 2.302±0.101 b 2.476±0.077 b
150 mmol L-1 NaCl 株高 Stem length (cm) 12.013±0.649 a 7.300±0.399 b 7.685±0.301 b
根长 Root length (cm) 22.265±0.646 a 21.630±0.578 a 21.905±0.668 a
鲜重 Fresh weight (g) 2.928±0.149 a 1.511±0.067 b 1.317±0.065 b

Fig. 5

Salt tolerance of BnaMPK6 genes under different concentrations of NaCl solutions A: WT and cr-bnampk6 plants phenotypes under salt stress; B: root length of WT and cr-bnampk6 plants under salt stress; C: fresh weight of WT and cr-bnampk6 plants under salt stress; D: plant height of WT and cr-bnampk6 plants under salt stress. WT are used as control, the asterisk (*) are significantly different (t-test: *, P < 0.05)."

Fig. 6

Accumulation of ROS and proline of cr-bnampk6 plants under different concentrations of NaCl solutions A: the accumulation of ROS of cr-bnampk6 plants by NBT; B: the accumulation of MDA of cr-bnampk6 plants; C: the accumulation of proline of cr-bnampk6 plants. ROS: reactive oxygen species; MDA: malondialdehyde; WT are used as control, the asterisk (*) are significantly different (t-test: *, P < 0.05)."

[1] 李豪, 邹伟. 微生物在油菜秸秆资源化中的应用研究进展. 中国饲料, 2018, (23): 72-76.
Li H, Zou W. Progress on the applied research of microorganisms in the utilization of rape straw in China. China Feed, 2018, (23): 72-76. (in Chinese with English abstract)
[2] 李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21: 1-19.
Li L X, Chen B Y, Yan G X, Gao G Z, Xu K, Xie T, Zhang F G, Wu X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. J Plant Genet Resour, 2020, 21: 1-19. (in Chinese with English abstract)
[3] Tyagi S, Kumar R, Kumar V, Won S Y, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops Food, 2021, 12: 125-144.
doi: 10.1080/21645698.2020.1831729 pmid: 33079628
[4] 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37: 953-973.
Shan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas, 2015, 37: 953-973. (in Chinese with English abstract)
[5] 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas9植物基因组编辑技术研究进展. 华南农业大学学报, 2019, 40(5): 38-49.
Liu Y G, Li G S, Zhang Y L, Chen L T. Current advances on CRISPR/Cas9 genome editing technologies in plants. J South China Agric Univ, 2019, 40(5): 38-49. (in Chinese with English abstract)
[6] Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant, 2013, 6: 2008-2011.
doi: 10.1093/mp/sst121 pmid: 23963532
[7] Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant, 2013, 6: 1975-1983.
doi: 10.1093/mp/sst119 pmid: 23956122
[8] Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014, 41: 63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457
[9] Braatz J, Harloff H J, Mascher M, Steinb N, Himmelbach A, Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol, 2017, 174: 935-942.
doi: 10.1104/pp.17.00426
[10] Fedoroff N V, Battisti D S, Beachy R N, Cooper P J, Fischhoff D A, Hodges C N, Knauf V C, Lobell D, Mazur B J, Molden D, Reynolds M P, Ronald P C, Rosegrant M W, Sanchez P A, Vonshak A, Zhu J K. Radically rethinking agriculture for the 21st century. Science, 2010, 327: 833-834.
doi: 10.1126/science.1186834 pmid: 20150494
[11] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/annurev.arplant.53.091401.143329
[12] Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000, 124: 941-948.
doi: 10.1104/pp.124.3.941 pmid: 11080272
[13] Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99: 8436-8441.
doi: 10.1073/pnas.122224699
[14] Zhu J K. Regulation of ion homeostasis under salt stress. Curr Opini Plant Biol, 2003, 6: 441-445.
[15] Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo J M, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19: 1415-1431.
doi: 10.1105/tpc.106.042291
[16] Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol, 2010, 188: 762-773.
doi: 10.1111/j.1469-8137.2010.03422.x pmid: 20796215
[17] Jiang C, Zhang X, Liu H, Xu J R. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog, 2018, 14: e1006875.
doi: 10.1371/journal.ppat.1006875
[18] Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983.
doi: 10.1038/415977a
[19] Kovtun Y, Chiu W L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 2000, 97: 2940-2945.
doi: 10.1073/pnas.97.6.2940
[20] Ichimura K, Casais C, Peck S C, Shinozaki K, Shirasu K. MEKK1 is required for MPK4 activation and regulates tissue- specific and temperature-dependent cell death in Arabidopsis. J Biol Chem, 2006, 281: 36969-36976.
doi: 10.1074/jbc.M605319200 pmid: 17023433
[21] Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature, 2008, 451: 789-795.
doi: 10.1038/nature06543
[22] Ouaked F, Rozhon W, Lecourieux D, Hirt H A. MAPK pathway mediates ET signaling in plants. EMBO J, 2003, 22: 1282-1288.
pmid: 12628921
[23] Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem, 2008, 283: 26996-27006.
doi: 10.1074/jbc.M801392200 pmid: 18693252
[24] Wang H, Ngwenyama N, Liu Y, Walker J C, Zhang S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell, 2007, 19: 63-73.
doi: 10.1105/tpc.106.048298 pmid: 17259259
[25] Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J, 2000, 24: 655-665.
pmid: 11123804
[26] Doyle J J. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13-15.
doi: 10.1103/PhysRevFocus.12.13
[27] Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep, 2003, 21: 599-604.
pmid: 12789436
[28] Liu Q, Wang C, Jiao X, Zhang H, Song L, Li Y, Gao C, Wang K. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China: Life Sci, 2019, 62: 1-7.
[29] 王学奎, 黄见良. 植物生理生化实验原理和技术(第3版). 北京: 高等教育出版社, 2015. pp 1-324.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological and Biochemical Experiments, 3rd edn. Beijing: Higher Education Press, 2015. pp 1-324. (in Chinese)
[30] Li C H, Wang G, Zhao J L, Zhang L Q, Ai L F, Han Y F, Sun D Y, Zhang S W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 2014, 26: 2538-2553.
doi: 10.1105/tpc.114.125187
[31] Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell, 2015, 32: 278-289.
doi: 10.1016/j.devcel.2014.12.023 pmid: 25669882
[32] Liu C, Mao B, Yuan D, Chu C, Duan M. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J, 2021, 10: 13-25.
doi: 10.1016/j.cj.2021.02.010
[33] 靳容, 刘明, 赵鹏, 张强强, 张爱君, 唐忠厚. 甘薯丝裂原活化蛋白激酶MPK6对低温胁迫的响应. 中国农业科学, 2021, 54: 4265-4273.
Jin R, Liu M, Zhao P, Zhang Q Q, Zhang A J, Tang Z H. IbMKP6, a mitogen-activated protein kinase, confers low temperature tolerance in sweetpotato. Sci Agric Sin, 2021, 54: 4265-4273. (in Chinese with English abstract)
[34] Gonzalez Besteiro M A, Bartels S, Albert A, Ulm R. Arabidopntsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, in dependent of the UVR8 photoreceptor pathway. Plant J, 2011, 68: 727-737.
doi: 10.1111/j.1365-313X.2011.04725.x
[35] Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 2007, 19: 805-818.
pmid: 17369371
[36] Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ, 2010, 33: 453-467.
doi: 10.1111/j.1365-3040.2009.02041.x
[37] Kaye Y, Golani Y, Singer Y, Leshem Y, Cohen G, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate 5-phosphatase 7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant Physiol, 2011, 157: 229-241.
doi: 10.1104/pp.111.176883
[38] Zhang Z, Liu H, Sun C, Ma Q, Bu H, Chong K, Xu Y. A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. J Plant Physiol, 2018, 229: 100-110.
doi: 10.1016/j.jplph.2018.07.003
[1] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[2] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[3] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] YUE Man-Fang, ZHANG Chun, ZHENG Deng-Yu, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmbHLH91 to abiotic stress [J]. Acta Agronomica Sinica, 2022, 48(12): 3004-3017.
[8] CHEN Xiang-Qian, JIANG Qi-Yan, SUN Xian-Jun, NIU Feng-Juan, ZHANG Hui-Yuan, HU Zheng, ZHANG Hui. Construction and application of soybean CRISPR/Cas9 multiplex editing vector [J]. Acta Agronomica Sinica, 2022, 48(11): 2706-2714.
[9] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
[10] ZHANG Xiao-Wen, LI Shi-Jiao, ZHANG Xiao-Jun, LI Xin, YANG Zu-Jun, ZHANG Shu-Wei, CHEN Fang, CHANG Li-Fang, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. QTL mapping for salt tolerance in wheat line CH7034 [J]. Acta Agronomica Sinica, 2022, 48(10): 2654-2662.
[11] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[12] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[13] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[14] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
[15] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!