Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 526-538.doi: 10.3724/SP.J.1006.2023.24050

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes

XIAO Jian1(), WEI Xing-Xuan1, YANG Shang-Dong1, LU Wen3,*(), TAN Hong-Wei2,*()   

  1. 1Agricultural College, Guangxi University, Nanning 530004, Guangxi, China
    2Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
    3Institute of Agricultural Science, Fusui 532199, Guangxi, China
  • Received:2022-03-08 Accepted:2022-07-21 Online:2022-08-22 Published:2022-08-22
  • Contact: LU Wen,TAN Hong-Wei E-mail:1318513279@qq.com;271155431@qq.com;hongwei_tan@163.com
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000600);Guangxi Academic Degree and Postgraduate Education Reform Special Project(JGY2021013);China Agriculture Research System(Sugar, CARS170206)

Abstract:

To provide theoretical basis for developing sugarcane intercropping cultivation system, cane yields, total economic benefit, soil physicochemical properties and bacterial community structure in rhizospheres of sugarcane intercropping with watermelon were analyzed. Based on traditional and modern high-throughput sequencing techniques, cane yields, total economic benefit, soil physicochemical properties and bacterial community structure in rhizosphere of sugarcanes between monoculture (CK) and sugarcane intercropping with watermelons (TM) were analyzed. Compared with CK, the contents of soil organic matter (SOM), total nitrogen (TN), phosphorus (TP) and potassium (TK), and the contents of available nitrogen (AN), phosphorus (AP) and potassium (AK) were all not significantly altered in sugarcane intercropping with watermelons system. Meanwhile, soil bacterial diversity, richness and soil bacterial functions were also not significantly changed in sugarcane intercropping with watermelons system. In addition, although some soil dominant bacterial phyla, such as Actinobacteria and other could be enriched, but Planctomycetes and Bacteroidetes also lost in rhizospheres of sugarcanes in TM treatments also lost. Meanwhile, Acidothermus, Bradyrhizobium, norank_o__SC-I-84, Bryobacter, Streptomyces, norank_f__DA111, Candidatus_Solibacter, Acidibacter and norank_f__Acidobacteriaceae__Subgroup_1_ were the unique soil dominant bacterial genera in rhizospheres of sugarcanes in CK. By contrast, Micromonospora, norank_f__Anaerolineaceae, unclassified_f__Micrococcaceae, norank_o__JG30-KF-CM45, norank_f__Elev-16S-1332, norank_c__Actinobacteria, Luedemannella, unclassified_f__Intrasporangiaceae, norank_f__ Nitrosomonadaceae, unclassified_f__Nocardioidaceae, norank_c__S085 and Defluviicoccus were the specific soil dominant bacterial genera in rhizospheres sugarcanes in TM treatment. Moreover, there were no significantly different in the functions of soil bacteria in rhizospheres of sugarcanes between TM and CK treatments, suggesting that soil bacterial functions in rhizospheres of sugarcanes did not significantly alter by intercropping with watermelons. In comparison with sugarcane monoculture, cane yields and total economic benefit all could be improved. In addition, soil physicochemical properties and soil bacterial diversity, richness and functions in rhizospheres of sugarcanes could not be significantly improved by intercropping with watermelons. However, the compositions of soil bacterial communities were altered, such as Micromonospora, enriched as the unique soil dominant bacterial genera in rhizospheres of sugarcanes intercropping with watermelons. All the above results showed that not only cane yields and total economic benefit could be improved but also soil physicochemical properties were not decreased. Furthermore, soil bacterial functions also were not significantly deteriorated, just the compositions of soil bacterial communities were partly altered by intercropping with watermelons. The stress resistance properties of sugarcanes could be improved by intercropping with watermelons for some benefit bacteria, such as Micromonospora enriched in rhizospheres of sugarcanes under sugarcane/watermelon intercropping systems.

Key words: intercropping, sugarcane, watermelon, soil bacteria, high-throughput sequencing

Table 1

Yields of sugarcane and watermelon and total economic benefit between monoculture and intercropping with watermelon systems"

年份
Year
处理
Treatment
甘蔗产量
Yield of sugarcane
(t hm-2)
西瓜产量
Yield of watermelon
(t hm-2)
总经济效益
Total economic benefit
(Yuan hm-2)
2016 TM 80.33±0.75 a 13.30±0.44 53,366.67±765.40 a
CK 80.63±1.29 a 40,316.67±642.91 a
2017 TM 80.83±0.81 a 13.57±0.32 53,983.33±728.58 a
CK 80.33±0.75 a 40,166.67±375.28 a
2018 TM 81.13±0.93 a 13.50±0.36 54,066.67±579.51 a
CK 80.60±0.75 a 40,300.00±377.49 a

Table 2

Soil physicochemical properties in rhizospheres of sugarcanes between monoculture and intercropping with watermelon systems"

处理
Treat-
ment
pH 土壤有机质
SOM
(g kg-1)
全氮
TN
(g kg-1)
全磷
TP
(g kg-1)
全钾
TK
(g kg-1)
碱解氮
AN
(mg kg-1)
速效磷
AP
(mg kg-1)
速效钾
AK
(mg kg-1)
TM 4.93±0.06 a 20.23±0.15 a 0.42±0.01 a 0.45±0.01 a 9.10±0.10 a 39.00±1.00 a 15.33±1.53 a 80.00±1.00 a
CK 4.93±0.15 a 20.07±0.25 a 0.39±0.01 a 0.44±0.01 a 9.07±0.06 a 36.00±1.00 a 12.00±1.00 a 76.33±1.53 a

Table 3

Alpha diversity of soil bacteria in rhizospheres of sugarcanes between monoculture and intercropping with watermelons systems"

处理
Treatment
香农指数
Shannon index
辛普森指数
Simpson index
Ace指数
Ace index
Chao1指数
Chao1 index
TM 6.10±0.16 a 0.0064±0.0031 a 2014.77±248.17 a 2084.61±259.09 a
CK 6.14±0.12 a 0.0061±0.0007 a 2049.02±152.34 a 2089.24±156.58 a

Fig. 1

Compositions of soil bacteria in rhizospheres of sugarcanes at phylum level between monoculture and intercropping with watermelon systems TM: sugarcane intercropping watermelon; CK: sugarcane monoculture."

Fig. 2

Compositions of soil bacteria in rhizospheres of sugarcane at genus level between monoculture and intercropping with watermelon system TM: sugarcane intercropping watermelon; CK: sugarcane monoculture."

Fig. 3

LEfSe analysis of soil bacteria in rhizospheres of sugarcanes between monoculture and intercropping with watermelon systems (LDA score: 3.5) TM: sugarcane intercropping watermelon; CK: sugarcane monoculture."

Fig. 4

Venn diagram of soil bacteria in rhizospheres of sugarcanes at genus level between monoculture and intercropping with watermelon systems TM: sugarcane intercropping watermelon; CK: sugarcane monoculture."

Fig. 5

Soil bacterial community phenotypes in TM and CK treatments by BugBase predicted analysis TM: sugarcane intercropping watermelon; CK: sugarcane monoculture. * mean significant difference at the 0.05 probability level."

Fig. 6

Relative abundance of soil bacterial functions at primary (A) and secondly functional levels (B) between sugarcane intercropping and monoculture systems TM: sugarcane intercropping watermelon; CK: sugarcane monoculture."

Fig. 7

Correlation heat map of the top ten soil bacterial phyla and soil properties TK: total potassium; pH: pH value; TP: total phosphorus; SOM: soil organic matter; TN: total nitrogen; AP: the available phosphorus; AN: the available nitrogen; AK: the available potassium; TM: sugarcane intercropping watermelon; CK: sugarcane monoculture. X and Y axis are environmental factors and phyla, correlation r and P-values are obtained by calculation. r in different colors to show, the right side of the legend is the color range of different r-values; *, **, and *** mean significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 甘蔗间作不同豆科作物对甘蔗植株内生细菌多样性的影响. 热带作物学报, 2021, 42: 3188-3198.
Xiao J, Chen S Y, Sun Y, Yang S D, Tan H W. Effect of intercropping with different legume crops on endophytic bacterial diversity of sugarcanes. Chin J Trop Crops, 2021, 42: 3188-3198. (in Chinese with English abstract)
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征. 作物学报, 2022, 48: 1222-1234.
doi: 10.3724/SP.J.1006.2022.14060
Xiao J, Chen S Y, Sun Y, Yang S D, Tan H W. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications. Acta Agron Sin, 2022, 48: 1222-1234. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14060
[3] 唐秀梅, 蒙秀珍, 蒋菁, 黄志鹏, 吴海宁, 刘菁, 贺梁琼, 熊发前, 钟瑞春, 韩柱强, 何龙飞, 唐荣华. 甘蔗间作花生对不同耕层土壤微生态的影响. 中国油料作物学报, 2020, 42: 713-722.
Tang X M, Meng X Z, Jiang J, Huang Z P, Wu H N, Liu J, He L Q, Xiong F Q, Zhong R C, Han Z Q, He L F, Tang H R. Effects of sugarcane/peanut intercropping on soil microenvironment in different plough layer. Chin J Oil Crop Sci, 2020, 42: 713-722. (in Chinese with English abstract)
[4] 彭东海, 杨建波, 李健, 邢永秀, 覃刘东, 杨丽涛, 李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响. 植物生态学报, 2014, 38: 959-969.
doi: 10.3724/SP.J.1258.2014.00090
Peng D H, Yang J B, Li J, Xing Y X, Qin L D, Yang L T, Li Y R. Effects of intercropping with soybean on bacterial and nitrogen-fixing bacterial diversity in the rhizosphere of sugarcane. Chin J Plant Ecol, 2014, 38: 959-969. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00090
[5] 李志贤, 冯远娇, 杨文亭, 王建武. 甘蔗间作种植研究进展. 中国生态农业学报, 2010, 18: 884-888.
Li Z X, Feng Y J, Yang W T, Wang J W. The progress of research on sugarcane intercropping. Chin J Eco-Agric, 2010, 18: 884-888. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00884
[6] 车江旅, 吴建明, 宋焕忠. 甘蔗间套种大豆研究进展. 南方农业学报, 2011, 42: 898-900.
Che J L, Wu J M, Song H Z. A review on the researches on sugarcane-soybean intercropping system. J South Agric, 2011, 42: 898-900. (in Chinese with English abstract)
[7] Branco R B F, de Moraes C C, Calori A H, Rós A B, Purquerio L F V. Watermelon cultivation in regeneration areas of a sugarcane field under different soil managements. Pesqui Agropecu Bras, 2019, 54: e00039.
doi: 10.1590/s1678-3921.pab2019.v54.00039
[8] 陈燕丽, 苏天明, 苏利荣, 李琴, 秦芳, 何铁光. 甘蔗套种西瓜、大豆的效益. 江苏农业科学, 2017, 45(7): 133-135.
Chen Y L, Su T M, Su L R, Li Q, Qin F, He T G. Benefit of interplanting sugarcane with watermelon and soybean. Jiangsu Agric Sci, 2017, 45(7): 133-135. (in Chinese with English abstract)
[9] 朱秋珍, 刘晓燕. 甘蔗套种春西瓜的效益及其配套栽培技术. 中国糖料, 2012, (4): 40-42.
Zhu Q Z, Liu X Y. Benefit of sugarcane interplanting spring watermelon cultivation technology. Sugar Crops China, 2012, (4): 40-42. (in Chinese with English abstract)
[10] 李锦莲. 扶绥县甘蔗间种西瓜生产发展策略探讨. 广西农业科学, 2010, 41: 1022-1024.
Li J L. Development strategies for sugarcane interplanting watermelon in Fusui county. Guangxi Agric Sci, 2010, 41: 1022-1024. (in Chinese with English abstract)
[11] 区惠平, 周柳强, 黄金生, 曾艳, 朱晓晖, 谢如林, 谭宏伟, 黄碧燕. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响. 中国农业科学, 2018, 51: 1931-1939.
Qu H P, Zhou L Q, Huang J S, Zeng Y, Zhu X H, Xie R L, Tan H W, Huang B Y. Effects of long-term different fertilization on sugarcane yield stability, fertilizer contribution rate and nutrition loss. Sci Agric Sin, 2018, 51: 1931-1939. (in Chinese with English abstract)
[12] 李停锋, 李雯, 郭君钰, 顾欣. 土壤调理剂配施菌剂对连作压砂田土壤养分及西瓜生长、产量的影响. 核农学报, 2021, 35: 1923-1930.
doi: 10.11869/j.issn.100-8551.2021.08.1923
Li T F, Li W, Guo J Y, Gu X. Effects of soil conditioners combined with microbial agent on soil nutrient and Citrullus lanatus growth and yield in continuous cropping gravel mulch field. J Nucl Agric Sci, 2021, 35: 1923-1930. (in Chinese with English abstract)
[13] Yang S D, Xiao J, Liang T, Liang T, He W Z, Tan H W. Response of soil biological properties and bacterial diversity to different levels of nitrogen application in sugarcane fields. AMB Express, 2021, 11: 172.
doi: 10.1186/s13568-021-01331-4 pmid: 34919198
[14] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. pp 146-195.
Lu R K. Soil Agrochemical Analysis Method. Beijing: China Agricultural Science and Technology Press, 2000. pp 146-195. (in Chinese)
[15] Lundberg D S, Lebeis S L, Paredes S H, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del R T G, Edgar R C, Eickhorst T, Ley R E, Hugenholtz P, Tringe S G, Dangl J L. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488: 86-90.
doi: 10.1038/nature11237
[16] Bulgarelli D, Garrido-Oter R, Münch P C, Weiman A, Dröge J, Pan Y, McHardy A C, Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe, 2015, 17: 392-403.
doi: S1931-3128(15)00031-1 pmid: 25732064
[17] Grice E A, Kong H H, Conlan S, Deming C B, Davis J, Young A C, Bouffard G G, Blakesley R W, Murray P R, Green E D, Turner M L, Segre J A. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324: 1190-1192.
doi: 10.1126/science.1171700 pmid: 19478181
[18] Simpson E H. The measurement of diversity. Nature, 1949, 163: 688.
doi: 10.1038/163688a0
[19] Chao A, Wang W H, Chen Y C, Kuo C Y. Estimating the number of shared species in two communities. Statist Sin, 2000, 10: 227-246.
[20] 肖健, 孙妍, 陈思宇, 任奎瑜, 杨尚东, 唐小付. 南方果园蚁巢土壤微生物群落结构特征分析. 南方农业学报, 2021, 52: 1604-1614.
Xiao J, Sun Y, Chen S Y, Ren K Y, Yang S D, Tang X F. Characteristics of soil microbial community structure in ant nests in orchards in southern China. J South Agric, 2021, 52: 1604-1614. (in Chinese with English abstract)
[21] van der Heijden M G A, Wagg C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil, 2013, 363: 1-5.
doi: 10.1007/s11104-012-1545-4
[22] 肖健, 黄小丹, 林刚云, 吴银秀, 杨尚东, 屈达才. 青枯病易感和钝感桑树根际土壤生物学性状及细菌群落结构比较. 蚕业科学, 2021, 47(2): 138-146.
Xiao J, Huang X D, Lin G Y, Wu Y X, Yang S D, Qu D C. Comparison on soil biological properties and bacterial community structures in rhizospheres between sensitive and insensitive mulberry varieties to bacterial wilt. Sci Seric, 2021, 47(2): 138-146. (in Chinese with English abstract)
[23] 肖健, 吴银秀, 杨尚东, 屈达才. 秸秆覆盖还田对桑园土壤真菌群落结构组成的影响. 西南农业学报, 2021, 34: 2707-2713.
Xiao J, Wu Y X, Yang S D, Qu D C. Effects of straw mulching on soil fungal community structure in mulberry plantation. Southwest China J Agric Sci, 2021, 34: 2707-2713. (in Chinese with English abstract)
[24] 杨尚东, 郭霜, 任奎喻, 庞师婵, 张传进, 王帅帅, 谭宏伟. 甘蔗宿根矮化病感病与非感病株根际土壤生物学性状及细菌群落结构特征. 植物营养与肥料学报, 2019, 25: 910-916.
Yang S D, Guo S, Ren K Y, Pang S C, Zhang C J, Wang S S, Tan H W. Soil biological properties and bacterial community structures in rhizosphere soil of canes infected and non-infected by ratoon stunting disease. J Plant Nutr Fert, 2019, 25: 910-916. (in Chinese with English abstract)
[25] Wang Y, Marschner P, Zhang F. Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant Soil, 2012, 354: 283-298.
doi: 10.1007/s11104-011-1065-7
[26] Yang S D, Xiao J, Huang Z Y, Qin R L, He W Z, Liu L M, Liu H J, Li A M, Tan H W. Comparison of soil biological properties and bacterial diversity in sugarcane, soybean, mung bean and peanut intercropping systems. J Agric Sci, 2021, 13: 54-68.
[27] 刘丽, 范娅, 冯海洋, 杜衎, 高德民. 生长时间和栽培模式对柴胡根际微生物群落结构的影响. 西南农业学报, 2022, 35: 50-57.
Liu L, Fan Y, Feng H Y, Du K, Gao D M. Effects of growing time and cultivation pattern on microbial community structure in rhizosphere of Bupleurum chinense DC. Southwest China J Agric Sci, 2022, 35: 50-57. (in Chinese with English abstract)
[28] 毛莲英, 李海碧, 桂意云, 张荣华, 杨荣仲, 周会, 韦金菊, 刘昔辉. 基于高通量测序分析间作猫豆对甘蔗根际土壤微生物的影响. 南方农业学报, 2021, 52: 332-340.
Mao L Y, Li H B, Gui Y Y, Zhang R H, Yang R Z, Zhou H, Wei J J, Liu X H. Effects of intercropping with Mucuna pruriens var. utilis on sugarcane rhizosphere microbe based on high throughput sequencing. J South Agric, 2021, 52: 332-340. (in Chinese with English abstract)
[29] Barberan A, Bates S T, Casamayor E O, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J, 2012, 6: 343-351.
doi: 10.1038/ismej.2011.119 pmid: 21900968
[30] Davis K E R, Sangwan P, Janssen P H. Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environ Microbiol, 2011, 13: 798-805.
doi: 10.1111/j.1462-2920.2010.02384.x pmid: 21108723
[31] Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol, 2006, 72: 1719-1728.
doi: 10.1128/AEM.72.3.1719-1728.2006
[32] Will C, Thurmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16s rRNA genes. Appl Environ Microbiol, 2010, 76: 6751-6759.
doi: 10.1128/AEM.01063-10
[33] Fierer N, Lauber C L, Ramirez K S, Zaneveld J, Bradford M A, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J, 2012, 6: 1007-1017.
doi: 10.1038/ismej.2011.159 pmid: 22134642
[34] Ai C, Zhang S, Zhang X, Guo D, Zhou W, Huang S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma, 2018, 319: 156-166.
doi: 10.1016/j.geoderma.2018.01.010
[35] 钟菊新, 唐红琴, 李忠义, 董文斌, 韦彩会, 李强, 何铁光. 绿肥配施化肥对岩溶区水稻土壤细菌群落结构的影响. 植物营养与肥料学报, 2021, 27: 1746-1756.
Zhong J X, Tang H Q, Li Z Y, Dong W B, Wei C H, Li Q, He T G. Effects of combining green manure with chemical fertilizer on the bacterial community structure in karst paddy soil. J Plant Nutr Fert, 2021, 27: 1746-1756 (in Chinese with English abstract).
[36] 罗俊, 林兆里, 李诗燕, 阙友雄, 张才芳, 杨仔奇, 姚坤存, 冯景芳, 陈建峰, 张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响. 作物学报, 2020, 46: 596-613.
doi: 10.3724/SP.J.1006.2020.94102
Luo J, Lin Z L, Li S Y, Que Y X, Zhang C F, Yang Z Q, Yao K C, Feng J F, Chen J F, Zhang H. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field. Acta Agron Sin, 2020, 46: 596-613. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94102
[37] 杨星鹏, 张志斌, 朱笃. 小单胞菌属次级代谢产物及其生物活性研究进展. 天然产物研究与开发, 2019, 31: 908-915.
Yang X P, Zhang Z B, Zhu D. Review on secondary metabolites and its biological activities from genus Micromonospora. Nat Prod Res Dev, 2019, 31: 908-915 (in Chinese with English abstract).
[38] Han S, Luo X S, Liao H, Nie H L, Chen W L, Huang Q Y. Nitrospira are more sensitive than Nitrobacter to land management in acid, fertilized soils of a rapeseed-rice rotation field trial. Sci Total Environ, 2017, 599/600: 135-144.
doi: 10.1016/j.scitotenv.2017.04.086
[39] Daims H, Wagner M. Nitrospira. Trends Microbiol, 2018, 26: 462-463.
doi: S0966-842X(18)30024-6 pmid: 29501479
[40] Daims H, Lebedeva E V, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard R H, Von Bergen M, Rattei T, Bendinger B, Nielsen P H, Wagner M. Complete nitrification by Nitrospira bacteria. Nature, 2015, 528: 504-509.
doi: 10.1038/nature16461
[41] 庞党伟, 陈金, 唐玉海, 尹燕枰, 杨东清, 崔正勇, 郑孟静, 李勇, 王振林. 玉米秸秆还田方式和氮肥处理对土壤理化性质及冬小麦产量的影响. 作物学报, 2016, 42: 1689-1699.
Pang D W, Chen J, Tang Y H, Yin Y P, Yang D Q, Cui Z Y, Zheng M J, Li Y, Wang Z L. Effect of returning methods of maize straw and nitrogen treatments on soil physicochemical property and yield of winter wheat. Acta Agron Sin, 2016, 42: 1689-1699. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01689
[1] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[2] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[3] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[4] LIN Zhi-Min, QIN Xian-Jin, WU Hong-Miao, PANG Zi-Qin, LIN Wen-Xiong. Differential response of different Radix pseudostellariae cultivars to continuous cropping stress and its intraspecific intercropping effects [J]. Acta Agronomica Sinica, 2022, 48(9): 2351-2365.
[5] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[6] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[7] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[8] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[9] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[10] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[11] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[12] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[13] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[14] LIU Shu-Xian, YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection [J]. Acta Agronomica Sinica, 2022, 48(12): 3080-3090.
[15] ZHANG Fu-Liang, CHEN Bing-Jie, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize grain nitrogen uptake and the composition of soil bacteria communities [J]. Acta Agronomica Sinica, 2022, 48(12): 3215-3224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!